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I. OVERVIEW

This report presents the progress made during the period of June 1985 to June 1988 on

experimental and theoretical investigations of waveguiding structures utilizing surface waves

on high quality semiconducting substrates. When exposed to a d.c. biasing magnetic field,

these structures display nonreciprocal behavior which can be used to design nonreciprocal

devices such as circulators, isolators, and phase shifters in the millimeter and submillimeter

wave frequency ranges. Reasonable losses can be achieved for device purposes when operated

at cryogenic temperatures.

Various experimental techniques were explored to achieve surface plasmon excitation on

n-type semiconducting materials in the near-millimeter wave ranges. Although some limited

studies have been carried out on this topic in the optical frequency range, very little work is

available on experimental derivation of propagation characteristics of surface plasmon on III-V

semiconductor compounds. For our purposes, most of the theory was deduced from optics with

numerous experiments conducted to obtain a reasonable interpretation for the quasi-optical

theory applied to the millimeter wave range. ,

The quasi-optical method employed both the prism coupling and grating coupling

techniques to generate surface plasmon on highly doped semiconductor materials in the

frequency range of 110-160 GHz. Preliminary measurements were carried out for the two

experimental approaches with results compared against the theoretical predictions of an air-

GaAs single interface. The prism coupling method utilizing a Kretschmann configuration

emerged as the most convenient technique to analyze the propagation characteristics of

semiconducting materials employing surface plasmons.

The verification of surface plasmon generation in the near-millimeter frequency range has

encouraged us to apply our experimental technique to two-dimensional structures consisting of

n-type scrniconducting materials in contact with different dielectric media. Such models could

prove to be essential in development of planar integrated quasi-optical devices in the millimeter
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and submillimeter wave ranges. However, since no rigorous theoretical solutions exist for these

structures, we are in need of a powerful numerical technique that can provide accurate

solutions to be compared against the experimental results. Finite-element method, a versatile

and efficient technique, can handle waveguiding structures with arbitrary shaped cross sections

and arbitrary electrical properties. Ve developed a finite-element formulation in terms of the

transverse components of the magnetic field to carry out theoretical investigations of

rectangular waveguides. The use of magnetic field components as dependent variables became

possible, since the permeability is a constant for all regions of the guides described here and

consequently components h,, hy, and hz are all continuous along interfaces. Eight-noded

isoparametric quadrilateral elements were employed in our numerical model to obtain

dispersive behavior and complete modal field distributions of various dielectric and

semiconductor waveg,,ides applicable to optical and quasi-optical component design.
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If. ACCOMPLISHMENTS

Our experimental efforts focused on both prism coupling and grating coupling techniques

to excite surface plasmon polaritons on highly doped n-type GaAs wafers in the frequency

range of 110-160 GHz. Reflection intensity measurements were conducted for this frequency

range and the preliminary results of the prism coupler showed better match between theory

and experiment than the data obtained using periodic structures. Although surface plasmon

was generated at 2mm of grating distance, the height, shape, and periodic length of the

gratings greatly influenced the end coupling detection procedure of the surface wave.

Furthermore the presence of the scattered waves contributed to a high level of noise. On the

contrary, prism couplers provided a non-destructive way of generating surface plasmons

without using complicated scattering theories. The advantageous features of the prism coupler

led to the use of this technique in completing our experiment. The final experimental w-0

dispersion curve for the frequency range of 110 to 160 GHz was obtained through a series of

Kretschmann prism coup!ing experiments performed at various angles of incidence with results

presented in section IV of this report. A second mode was observed in the experimental

dispersion spectrum caused by the interface adjacent to the prism. This mode normally does

not exist in the optical frequency range due to absorption levels of the prisms encountered in

the optical regions.

We have demonstrated the excitation of ,urface plasmons in the near-millimeter

frequency range of 110-160 GHz which up to now was not reported in the literature. Excellent

results were achieved. The use of highly doped n-type GaAs materials was also a first.

Although extensive experiments on loss and other parameters have yet to be carried out. the

success in quasi-optical method of excitation provides inspiration for continued studies on the

application of surface plasmons where used in conjunction with application of magnetic fields

for development of non-reciprocal millimeter-wave devices.

In parallel with the experimental analysis of structures used to generate surface waves, we
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developed a numerical model employing the finite-element formulation to obtain dependable

results for propagation characteristics of the waveguides which can be compared against the

experimental data.

Numerical analysis of one-dimensional waveguiding structures employing surface

magnetoplasmons were carried out using eight-noded isoparametric quadrilateral finite-

elements with results matching those from the exact solutions precisely. Here, the finite-

element formulation was derived in terms of the ez component for the TM mode of a single

air-GaAs interface exposed to a d.c. biasing magnetic field along the interface. This study was

presented at the 1985 IEEE MTT-S International Microwave Symposium, see appendix A, and

a more advance analysis of the topic w th complete field distributions of the modal spectrum

appeared as an IEEE Transaction paper, i.e., appendix B. Although excellent results were

achieved from the finite-element method, the explicit application of the boundary conditions

along the interface made the formulation used in appendices A and B somewhat complicated.

Another setback of finite-element method which is evident in analysis of two-dimensional

structures, is the appearance of non-physical (spurious) modes which do not satisfy the

divergence free condition of magnetic field, i.e., V.H=O. Therefore we developed a more

general finite-element formulation in terms of the transverse components of magnetic fields

which is applicable to two-dimensional rectangular waveguides having frequency-dependent

permittivity tensors with off-diagonal elements. This numerical model was used to obttin the

dispersion spectrum of inhomogeneously filled dielectric waveguides and optical embossed

waveguides. Excellent results were achieved and are presented in section 111. It may be noted

that no spurious solutions were observed in our finite-element analysis.

Finally, we derived the dispersive behavior and mode shapes of an embossed rectangular

waveguide employing n-type InSb material, see appendix C. This study will be submitted for

publication in the near future.
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III. ANALYSIS OF RECTANGULAR WAVEGUIDING STRUCTURES

BY TIE FINITE-ELEMENT METHOD

(N. Mohsenian)

INTRODUCTION

The widespread use of dielectri." waveguides for design of compor-nts such as phase

shifters, switches, mod;,lators, and directional couplers in millimeter and optical integrated

circuits has created a need for the development of num,,rical methods that can accurately

derive the propagation characteristics of such structures. Some approximate analysis of

rectangular dielectric structures have been made by several authors [1]-[4]. The study in [1] is

reliable for guides where the energy is mostly contained in the core region of the structure,

therefore offering good results at high frequencies and not trustworthy outcome -iose to cutoff

frequencies of the propagating modes. This approximate method led to the effective dielectric

constant technique [2] and was further developed by other research,-rs f3], [4] to obtain better

results for the rectangular waveguiding structures utilized in the design of millimeter-wave

through optical integrated circuits. There are also variational formulations applied to the

solutions of surface waveguides and slab-coupled waveguides [5], [6], which in general are not

suitable for problems employing anisotropic materials. Other techniques used to investigate

various waveguiding structures are the transverse resonance method [7], the equivalent

network approach [8], the field matching method [9], the finite-difference technique [10], [11],

and the method of using the telegraphist's equation L12].

Although the approximate and numerical analysis [l]-[12] have provided good results for

th2 propagating modes ir t' e millimeter-wave and optical dielectric waveg' ides, they generally

do not produce enough informations on field distributions in the model and are not applicable

to canonical waveguiding structures employing semiconducting materials with complicated

electrical properties. On the contrary, a numerical solution utilizing the finite-element

7



formulation, provides a powerful and versatile technique suitable to the analysis of practical

waveguides with arbitrary shaped cross sections and various regions consisting of complex

gyroelectric or gyromagnetic media. The accuracy of this numerical method in obtaining the

propagation characteristics of useful structures operating at millimeter-wave through optical

frequency ranges has been verified by several authors [13]-[20].

A serious difficulty associated with the finite-element formulation is the appearance of

nonphysical "spurious" solutions which has been the subject of some investigations [16], [19],

[211-[23]. Here the method developed by Hayata and coworkers [22] represents an appropriate

approach to the problem of eliminating the spurious modes in the dispersion spectra of planar

rectangular waveguiding structures.

The purpose of this study is to develop a numerical model employing the finite-element

formulation, and confirming its validity and versatility via examining the propagation modes

of some useful structures and their electromagnetic field distributions accordingly. This

procedure may then be applied to canonical models utilizing doped semiconductor substrates

with frequency dependent permittivities to analyze surface wave excitations in the millimeter

and submillimeter-wave frequency ranges. Results are given for inhomogeneously filled

dielectric waveguides and optical embossed waveguides which are in agreement with exact

solutions and published results.

FINITE-ELEMENT APPROACH

We consider two different waveguiding structures, the inhomogeneous dielectric

waveguide and the optical embossed waveguide, which have been subject of many

investigations as test cases for our model. The cross sections of the guides with the finite-

element mesh superposed are depicted in Fig.1 with the electromagnetic wave propagating in

the z-direction and the configuration bounded by electric walls. As discussed in the previous

section, the finite-element techniques developed in terms of longitudinal or transverse field
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components have resulted in many unwanted roots or singularities in their solutions. Spurious

modes are believed to have irregular behavior and not satisfy the divergence-free condition of

the magnetic field, i.e., V.H=0 [21]. To eliminate the spurious solutions, we will derive a finite-

element formulation in terms of the components of the magnetic field with the condition

V.H=O explicitly included in the formulation. The three component curl curl equation

obtained from Maxwell's equations take the form

Vx((r "1 VXH)- w2 ooH=O (1)

where cr is the relative dielectric constant.

We now divide the different regions of the configuration under study into eight-noded

isoparametric quadrilateral elements with the interpolating functions Ni(x,y) used to

approximate the h, h 5 hz components in the following manner: hx(x,y,z) [N(x,y)]{h} ejOz

hy(x,y,z) = [N(x,y)]{hy} eJ 0 z, hz(x,y,z) - . [N(x,y)]{hz} e~ j . Here [N(x,y)] is the row

vector of the interpolating functions and {h}'s are the column vectors of the nodal point values

for which no boundary conditions are specified. Galerkin technique was then employed to

generate the finite-element equations from (1)

9 2 h 2 ha2 a2h _

J r ( y hy2 2hx + z x ( ) hx) Ni(x,y) dxdy =0 (2)

J A + X) -02h (L')2hy) Ni(x,y) dxdy =0 (3)

IU ~ h 92 hz 92 hz a2h (
2rh -_ u c 2h (+ ) 2hz) • j Ni(xY) dxdy =0 (4)

The integrals are taken over the two dimensional domain -4 of the problem. Then divergence

theorem was used to generate the finite-element equations in the form

9



[R]).{h-}+[C].{hy}+[D].{iz} ( ( ny N i dl =0 (5)

ax a n, Nhx))n dt =0 (6)
D ]T'{hx}+([E]'( )  }  [ ] ' h )  (,,- ( ! 0z_ y N

[D].hx+F .hy+(](R]).{hz}+ ( L2 hfy 1Ny di

- r '( -h_2z)) nx j N i dl =0 (7)

Here the closed line integrals are to be evaluated along the boundary between different

media and also on the electric walls enclosing the waveguide with nx and ny being the unit

normal vectors to the interface for which the line integral is calculated. It is fairly easy to show

that the terms inside the line integrals represent the electric field components and due to the

boundary conditions on the electric walls and the continuity of the tangential components of

electric field along the interfaces, the line integrals would vanish. The i, j-th elements of the

matrices which are to be evaluated for each element are given where [ ]T indicates the

transpose matrix.

Bij = f r-1a aO- + - j ) dzdy (8)

Cij= Cr( j ddy (9)

.A= ~ N ficr( N J ) d~dy (10)

=r II "ONi ON.

Eii cr -" 0i + NiNj ) dzdy (11)
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ij= f{ Ar ' 9( N i Nj d Nd (12)

N' Ln Nj )y drcdy

Gjj f L jI L' L(13)
-4

-A

RiJ = f NiN j d~dy (14)
-4

Once assembled, the finite-element equations take the eigenvalue form of (15).

p[()2jhy (15)

[B] [C] [D] 1[[R] [0] [0]1

and pr] [C]T [E] [F] , Q~ [O]T [R] [0]
[D]T [F]T [G]j L[O]T [O]T [R]j

Here M and / are the normalized frequency and propagation constant, respectively, given by,

M=wt/c, =/3t, with t being the height of the core region for the embossed waveguide or the

dimension of the square cross section of the inhomogeneous dielectric waveguide, and c is the

velocity of light. The coordinates x and y were also normalized according to F= x/t and

y= y/t.

The finite-element dispersion spectrum obtained from the system in (15) includes spurious

solutions. Therefore, we adopted the method employed by Hayata and coworkers [22] to

explicitly include the relation V-H=0 in our formulation to eliminate the spurious solutions.

Upon application of Galerkin technique to the divergence-free condition of the magnetic field

the equations in (16) were obtained.

JhY= X} (16)fhz}J [Tz]"' [ [T,j [Ty)] f hy }1

Here [U] is the unity matrix and the elements of other matrices are

11



T . J NJ N dxdy Tij= - J*J Ni1 dxdy , Ty I.Ni dxdy
Txj ay

Substituting (16) into our previous results, (15), and multiplying by the transpose of the

coefficient matrix in (16), the final finite-element equations were generated in terms of the

transverse components of the magnetic field for which the dispersion spectrum does not

contain spurious modes.

]T (M)2[']T[Q,[L]). (17)

where [1] = [ [Tx [[U] [Ty]]

For a given value of 3, the eigenvalue problem of (17) can be easily solved to derive the values

of D. However, for complicated waveguiding structures where the frequency dependence of

electrical parameters of substrates are to be analyzed, the system in (17) no longer represents

an eigenvalue problem. Here we generate the following finite-element equations

[s (18)

where

[B] [C] [D] 1
S L]T [C] T [E] [F] [L] (19)

[D]T [F]T [G]

and the i, j-th elements of matrices [B], [C], [D], [E], [F], and [G] are given

2  F2P=F2 j -GM=2
BU =Bij- (W~t) R"-J , Cij=Cij' Dij=Dij' EiJ=Eij - ( ) R I0 I FI= ' " (3)-= R ij

A nontrivial solution exists for equation (18) if the determinant I S I = 0. Employing tile
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standard root finding techniques, one can obtain the values of Z for a given .

RESULTS AND CONCLUSIONS

The eigenvalues of equation (17) and the roots of the determinant I S I resulting from

(18) were both obtained to form the finite-element dispersion spectrum for the structures

depicted in Fig. 1. The two approaches produced identical results with the method used in (18)

applicable to the analysis of waveguides employing semiconducting materials. As the first

example we derived the LSM-LSE (odd modes) of an inhomogeneously filled dielectric

waveguide with c,=l.5. Eight quadrilateral elements were used to divide one-half of the cross

section of the guide with the plane of symmetry assumed to be a magnetic wall, see Fig. 1(a).

Good agreement was found between the finite-element results and the dispersion spectrum

obtained from the exact solution of the waveguide [24], see Fig. 2. As a comparison with other

finite-element formulations utilizing the variational technique [22], we calculated the first

thirteen values of C for f=10. Here we used eight and thirty-two quad-8 element in our

method. As seen from table I, the 32-element model offers better accuracy than the 64

triangular-element model of ref. [22]. The exact solution of the problem derived from the

transcendental equations is also shown [24].

13



TABLE I

(Inhomogeneous dielectric waveguide with cr=1.5)

exact sol. F.E. sol. in our F.E. sol. our F.E. sol.

from [24] literature [22] eight-elements 32-elements

LSM1 1 : 8.8090 8.8093 8.8093 8.8090

LSE 11 : 9.3860 9.3896 9.3921 9.3873

LSM 1 2 : 10.2721 10.2752 10.2790 10.2726

LSM 13 : 11.0975 11.1038 11.1120 11.0987

LSE 12 : 11.2566 11.2677 11.2857 11.2601

LSM 3 1: 11.4313 11.4501 11.4834 11.4358

LSE 3 1: 11.9434 11.9882 12.0358 11.9510

LSE 13 : 12.6406 12.6686 12.7543 12.6475

LSM 14 : 12.7691 12.8092 12.8375 12.8304

LSM 3 2 : 12.8844 12.9575 12.9655 12.8902

LSE 3 2 : 13.7780 • 14.0014 13.7906

LSM 3 3 : 14.0181 14.0607 14.0249

LSM1 5 : 14.7807 15.1475 14.8292
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Next we used thirty-two elements to obtain both the odd and even modes of an

inhomogeneously filled dielectric waveguide with r=17 .7 . One-half of the cross section of the

guide was divided into quad-8 elements. The plane of symmetry was assumed to be a magnetic

wall or an electric wall to derive the odd and even LSE-LSM modes, respectively. The first

eight branches of the finite-element dispersion spectrum was compared against the exact

solutions [24] and excellent agreement was achieved as shown in Fig. 3.

The second test case in our investigation was the optical embossed waveguide used in

optical integrated circuits. The core of the guide has a refractive index nl=4-j=1.5 and a

uniform substrate region with a refractive index n2 = =1.45, which is in contact with a third

dielectric, air, see Fig. 1(b). One of the first applications of the finite-element method to

optical waveguides was carried out by Yeh et al. [14]. The authors in [14] used 900 elements in

one-half of the entire cross section, to obtain the dominent mode Ell of various embossed

rectangular waveguides. The plane of symmetry along the y-axis was assumed to be a

magnetic wall. Later Koshiba and coworkers obtained the same results for the Ell mode

employing the finite-element method [20], and also using the equivalent network approach to

calculate the first four modes of the dispersion spectrum for the same waveguide [8].

We examined the accuracy of our finite-element formulation by obtaining the dominent

modes Ex, and EY for the optical waveguide analyzed in [8], [14], [20]. The finite-element grid1 11

of the problem is shown in Fig.l(b). An aspect ratio of two was used for the core region. With

the proper applications of boundary conditions along the y-axis, the fundamental modes are

derived. The plane of symmetry being a magnetic wall or an electric wall yields the Ell mode

or EXl mode, respectively. The results of the finite-element method derived from both the

eigenvalue solver and the determinant solver were satisfactory and matched each other.

Sixteen elements were used to divide the cross section of the guide and obtain the fundamental

modes. No spurious solutions were observed in this analysis. Then eight elements were

employed to divide one-half of cross section of the guide. With the proper boundary conditions
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along the y-axis, each dominent mode was derived separately. Results of the two different

models are compared in table I for a few points. Finally, the two fundamental modes obtained

from our analysis are compared against the results presented by the authors in [8] in Fig. 4.

TABLE II

(optical embossed waveguide with an aspect ratio of two; here the 8-element

and 16-element models represent one-half and complete cross section of the guide, respectively)

)3 E(Ex1 mode) 7(Ex1 mode) F(E D(EYlmode)1 1E 1 lmode) ~ ( 1 moe

8-elements 16-elements 8-elements 16-elements

11.0 7.5272 7.5272 7.5318 7.5348

17.0 11.4827 11.4827 11.49.q2 11.4972

23.0 15.4512 15.4512 15.4650 15.4689

29.0 19.4298 19.4298 19.4444 19.4484

35.0 23.4147 23.4147 23.4292 23.4330

It should be noted that the values 3 and a were used to calculate the parameters v and b

given in Fig. 4, where v=J 1 7F2 /r and b=((/)2- 2 )/(c1 - 2 ). The relative dielectric

constants of the core and substrate regions of the guide are represented by (l and C2 ,

respectively. We also derived the magnetic field distributions h,, hy, hz for the lowest point

calculated from the Ell mode. The results are shown in figures 5-7. As expected the

component h, had an even field distribution with most of its amplitude contained in the core

region of the guide. Components hy and hz displayed odd field distributions with some peaks

also showing in the core region. Overall h, was the dominent magnetic field component and

most of the energy of the electromagnetic wave seems to be traveling in the core region of the

structure where index of refraction of the material is the largest. This explains the satisfactory
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results we obtained while employing so few elements.

Validity and versatility of a finite-element method derived in terms of the transverse

components of the magnetic field was verified via solving the propagation characteristics of

some practical waveguiding structures used as test cases. Both the eigenvalue solver and the

determinant solver routines developed from equations (17) and (18) produced good results and

matched each other. The relation V-H=O was explicitly inserted into our formulation and the

spurious modes were completely eliminated in the finite-element solutions. The results

presented here gives us the necessary confidence to investigate complicated canonical models

utilizing surface waves on semiconductor substrates. These structures can be used to design

czGnponents in the millimeter and submillimeter-wave frequency ranges. The finite-element

technique developed here will be applied to such models employing III-V compounds with the

dispersion spectrum and modal field distributions presented in other sections of this report.
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IV. EXPERIMENTAL EXCITATION OF SURFACE PLASMONS ON

n-TYPE GaAs SUBSTRATES IN THE 110-160 GIIz FREQUENCY BAND

(Dong-Hyun iwang)

INTRODUCTION

Due to the advancement of communication technology, there exist a need for

development and operation of nonreciprocal devices in the millimeter and submillimeter-wave

frequency ranges. Waveguiding structures employing surface magnetoplasmons on

semiconducting substrates have shown great promise for developing planar integrated

nonreciprocal devices that can obtain the circuit functions performed by ferrite decices [1].

Experimental studies in surface plasmons are limited to works in the optical frequencies

[2]-[5). Even at these frequencies, very few obtained experimental dispersion relations of surface

plasmons on high mobility semiconductors [2]. In this work, we will investigate quasi-optical

techniques for the generation of surface plasmon waves on n-type GaAs substrates in the

frequency range of 110 to 160 GHz. Results for the experimental dispersion curve will be

compared to the theoretical predictions for a heavily doped n-type GaAs material at room

temperature. Analyzed are the prism and grated couplers as methods for excitation of surface

waves and their possible application when used in conjunction with application of magnetic

fields for nonreciprocal device application. Although plasmon generation on GaAs substrate

has been reported for optical frequencies [6], no experimental investigation has been carried on

in the frequency range of 110-160 GHz. This work will provide the first step in experimenting

with materials capable of control of plasma density. The application of surface plasmons could

provide a new array of millimeter-wave devices with loss comparable to ferrite devices at lover

frequencies.

27



SURFACE PLASMONS

A- Surface polaritons

As defined by Wallis et al. [7], a polariton is an electromagnetic wave coupled through

phonon, plasmon, magnon or other type of excitation to condensed matter. In the literature,

the term electromagnetic surface waves generally refer to guided modes propagating in a thin

film on top of a metal substrate (see Fig.1). This type of surface wave is not a polariton and

can be distinguished by examining its w-0 dispersion curve as shown in Fig. 2. In this paper,

the phenomena of interest for guiding and controlling millimeter waves are surface plasmons, a

member of the surface polariton family. This type of surface wave, for an isotropic n-type

semiconductor, has the unique dispersion curve which lies entirely to the right of the light line

in vacuum and is asymptotic to the surface plasma frequency (see Fig.3).

The theoretical dispersion of millimeter-wave surface plasmons in n-type GaAs was

derived by Nurmikko et al. [8], for an isotropic electron gas taking into consideration a simple

Drude contribution to the dielectric constant.
()= (0) WP2( (o+/ - :T ) = fs + is(1)

Where c( ° ) is the static dielectric constant of the material, wp is the plasma frequency, and r

is the momentum relaxation time. Equation (1) can be separated into real and imaginary parts

so,

C(W) = (s t + icsi

- 2 (o) 2
where £5 t  Re[c(o) __ __ am(

U)+(1/7)2 rW(w 2 +(1/r)2 )
Plotting Re[c(w))], we see it has large negative values at liquid nitrogen temperatures (77 0 K)

with a carrier concentration equivalent to the plasma frequency of Wp=10 1 3 rad/s for the

frequency band of 110-170 GHz. For the same plasma frequency, but at room temperature

(300 0 K), the real permittivity remains positive (see Fig.4). To obtain a surface plasmon wave,

it is necessary for one of the media's effective permittivity to posses a sufficiently large

negative real part. This requirement will be explained in the next section when the
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electromagnetic theory of surface polaritons is discussed. Since at room temperature the

effective real permittivity is only slightly positive (=3.0), adjustments in the carrier

concentration and lowering of the temperature to increase mobility will lower the permittivity

into the negative region. Although it is possible to obtain a desired range of values for the

carrier concentration through plasma injection, it would be difficult to measure the exact

carrier density contributed by this process. A problem also arises if optical injection methods

are used. The depth of penetration for the newly formed plasma layer will be substantially less

than the length of the millimeter wave, so the surface plasmon guiding structure becomes a

three or even four medium layer, complicating the theory further. For our immediate purpose,

a highly doped (i- 101 8 /cm 3 ) substrate will be used to generate a lower portion of the

dispersion curve without introducing concern over plasma injection problems.

B- Electromagnetic theory of surface polaritons

We consider a single planar interface of infinite extent which separates two media

characterized by frequency-dependent dielectric constants Ca(w) and b(W) for x>O and x<O,

respectively. If the magnetic field is eliminated from Maxwell's curl equations, the electric field

E satifies the equation
1 82 D 0o3

VxVxE + c2 at 2 
- (3)

We seek a solution to eq. (3) in which the electric field propagates in the z-direction and

decreases exponentially with increasing distance from the interface. So, the equations for the

electric fields in the two regions can be written as

Ea Eao e-oaX ei(kz-wt) x>O (4)

b = eab x ei(kz-,t)Eb=Eb , x<0

substituting eqs.(4) into (3), we obtain the decay constant for each region.
2 _ 2 2 k2_-  w w2

0 = k2 - a(w) - , 2 1b(W) c- (5)
cf

Applying the boundary conditions, at x=O leads to the relations

(tangential): Eay°=Eby ° , Eaz°=Ebz °  (6) and (normal): fa(w)/b()=-aa/Ob (7)
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In addition, from the continuity of the tangential components of B, the following is obtained.

( 0a + t ) Eayo = 0 (8)

Since the decay constants aa and ab must be positive, Eay'= 0. Therefore for surface

polaritons only TM mode propagation exists. Using eqs. (5) and (7), the well-known dispersion

relation is obtained [7]-[9].

k2 W2 Ca(w) Cb(W) (9)
c2 CaM + Cb(W)

Equation (7) indicates that fa(w) and Cb(W) must have opposite signs at the frequency w. The

medium with negative c(w) is termed "surface active". In the case of an air interface for (b,

ca(w)<-1. So this justifies the statement in section A regarding the requirement for a media to

have an effective real permittivity of negative value.

C- Theory for highly doped GaAs

For a doping level of order of 1018 /cm 3 , GaAs exhibits an effective dielectric constant

with large negative values for the real part of the permittivity in the near millimeter wave

range of 110 to 170 GHz. To obtain the effective permittivity, we have to calculate the plasma

frequency and the relaxation time from the carrier concentration. The plasma frequency is

defined by WP2 ne 2  (10)

where n is the carrier concentration of the material. Since for the doping level of 1018, the

plasma frequency Wp is about 2.18x10 1 4 rad/s, the operating bandwidth is well below the

asymptotic value of the surface plasma frequency wps. The relaxation time r, can be deduced

from the DC conductivity a(0), if r is assumed to be frequency independent. Since the

frequency-dependent conductivity is defined by

a(u)) = ne2,r 1 (11)

M* I - iwr

and we obtain the DC conductivity by setting w=O, o(O)=ne 2 r/m*. M/A-Com, the

manufacturer of the GaAs wafers, indicated an overall edge and center resistivity of 2.6x10 - 3

f-cm for the Si-doped samples. From the resistivity, an impurity concentration of 8x101 '/cm 3

can be deduced from the curve in Sze [10] for room temperature (T=3000 K) n-type GaAs.
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This value is very close to the carrier concentration of 1018 /cm 3 indicated by the

manufacturer, so we can reasonably assume all the impurities are ionized at room temperature.

With n=101 8 /cm 3 and a(0)=384.6 /0-cm, a vlaue of r=9.169x10 - 14 sec is obtained. The

corresponding change in the real part of the permittivity csf in eq.(2) can be calculated as a

function of w for the obtained wp and r. Since 1/r is large compared to the operating W range,

the Acs' is almost a constant at about -385. This yields an effective real permittivity of (s'-

382 if Re[c ( ° ) ] is assumed to be 13.0. The change in the imaginary permittivity is AL,"-_-4030.

If Im[c(1)]=1000 is assumed, the complex effective permittivity for the frequency range of 110-

170 GHz is about cs=-382 - i3030. Using this constant effective permittivity, the dispersion

relation is simplified.

The dispersion relation for surface plasmons is given by Ward et al. [11] where the

propagation constant for an air interface is given by

8 (A+ A2 2 ) (12)cN 2D

2 f 2where A=IcI + f , B=IcI + C , D=I£ + 1.012 (13)

and c=c + is the effective dielectric constant of GaAs. The theoretical dispersion curve for a

sample with a carrier concentration of 101 8 /cm 3 is a constant line slightly to the right of the

light line for the frequency range of 110-170 GHz. In the case of n=10 1 8 /cm 3 , w,=2.18x10 14

rad/s and for r=9.17x10 "1 4 s, the propagation constant has the relation, 6=(w/c) 1.098. If a

simple model is used without taking the Drude model into consideration, the dispersion

relation is not altered by a great amount, since /0=(w/c) 1.026.

THEORY OF EXCITATION OF THE SURFACE WAVES

A- Grating coupler theory

In grating couplers, the surface wave must be accompanied by space harmonics in the

grating region because of the periodic nature of the structure. These harmonics have
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propagation constants given by

/ 3m + rd m =0, ±1, ±2 (14)

where )30 is closely equal to the surface wave propagation constant if the periodic structures

are considered to be small perturbation and d the periodic spacing. The phase matching

condition can be satisfied if k sinO = Om (15)

where 0 is the incident beam angle to the periodic structures.

Experiments with grating couplers on semiconductors such as GaAs [6] and InSb [2] were

conducted earlier. The construction of a dispersion curve w(fl), involves the determination of

eigenfrequencies Wr, which depends on the grating profiles. Experimentalists have encountered

the well known Wood's anomalies for gratings. This is illustrated in Fig.5. Theory and

experiment have shown that the modulation depth h of the periodic structures contributes

significantly to the shape of the dispersion curve [12], [13]. Since the experiment is performed

using high index line strips of rectangular shape polymer material as the periodic corrugation,

better coupling is expected than for grooves drawn on the substrate surface. The only

difference in theory between grooves and high index structures is a refractive index term np,

multiplied for the material used as grating structures on the left hand side of eq. (15). So

I6m=np k sinG and np-1.60 for polymer dielectrics at the operating frequency range of 110 to

170 GHz. The maximum achievable efficiency of coupling for such periodic structures is 80.1%

[14]. This condition is obtained for the optimum awo value of 0.68, where

w, = w sec 0 (16)

w is the half beam-width of a Gaussian beam and a is the leakage factor. The leakage factor

depends very much on the height of the grating [15]. If the length of the period d, is half of the

wavelength, and h, the height is about 0.1 mm at A=2.0 mm, the leakage factor is

approximately 3.75/m. The constraint on the beam width for this range of wavelength is

0 < w < 18.1 cm for 0 < 0 < 7r/2 (17)

so for practical high efficiency coupling at 0.1 mm of grating height, about 10 to 50 of
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incidence angle will be optimal to obtain a reasonable beam width from a waveguide horn.

Since we are involved in experimenting at considerably shorter wavelength than is the case for

microwaves, most of the theory is obtained from optics. However, various experiments vill

have to be conducted to obtain a reasonable interpretation for the quasi-optical theory applied

to the millimeter-wave range.

B- Prism coupler theory

The use of attenuated total reflection (ATR) method for wave excitation has been a

common technique in waveguide optics (16], (17]. More common terminologies used are the

prism coupling or optical tunneling techniques. The surface plasmon excitation technique was

first suggested by Otto [18] and followed by a modified technique by Kretschmann [19] for thin

samples. The theories behind this method of surface plasmon excitation are basically identical

to that of guided optics. In guided optics, the dielectric layer is bounded by a top and bottom

layer and the incident wave travels along a zig-zag path exhibiting total reflection at both

layers. The wave in surface plasmon is bounded on top by an active surface and below extends

to infinity. Both configurations have to match the propagation constant at the base of the

prism to the guided wave mode or the surface plasmon propagation constant. In the guided

wave case, the theory becomes more complicated as consideration of various allowable modes

for the dielectric thickness limits the material selection for the prism coupler. This restriction is

more evident in semiconductor guides where the refractive indexes range from 3.0 to 4.0. Since,

to excite a guided mode, the prism coupler's refractive index has to exceed the guide's effective

refractive index, optical range wave guiding had to be achieved through end coupling. The use

of millimeter waves provide new flexibilities in selecting prism couplers for semiconductor

guides. This is due to the reduced effective refractive index contributed by the carriers.

The Otto or guided wave configuration has a gap between the prism and the guide. This

gap is usually of the order of the wavelength and it is usually considered to be air, although

index matching dielectrics can be used to fill the gap. The Otto configuration works through a

33



phenomenon refered to as frustrated total internal reflection. The ATR technique utilizes the

evanescent tail formed through the prism to couple to the surface wave (both surface plasmon

and guided wave). Since surface waves are non-radiative, the propagation constant required is

to the right of the light line in the w-,3 diagram. This can be achieved by forming an incident

wave above the critical angle of the prism-gap interface. When the incident wave is totally

reflected, the reflected intensity shows a dip at the resonant coupling condition. This loss in

energy corresponds to the energy conversion into surface wave. The dispersion relation, for a

resonant angle of incidence Oi, can be expressed by 1(w)=w/c np sin 0j .

EXPERIMENT AND RESULTS

A- Ezperiment setup

The source of the millimeter wave was a Micro-Now model 705B millimeter wave sweeper

with a model 170 BVO tube. The output power averaged about 10 mNV for the frequency

band of 110-170 GHz. Our measurements were performed using a bolometer. A signal

generator was used to modulate the tube at 1kHz. The modulation was triggered by a TTL

signal and was connected to the amplitude modulation input (AM). The TTL signal was also

connected to the reference input of a phase locked amplifier, (EG&-G Princeton Applied

Research model 5207). The modulated millimeter wave output was connected to a Hughes

model 45728H-1000 attenuator with a range of 0 to 50 dB of attenuation and a maximum

insertion loss of 2dB. A directional coupler was followed by the attenuator. The Hughes

coupler model 45328H-1210 is a 3 port split block style general purpose coupler with a low

frequency band crossguide coupling value of 10dB. The second line output from the coupler

was connected to the leveler input of the generator. The main line was connected to a

waveguide horn. The pyramidal horn has a 24dB gain at mid band. The reflected and surface

transmitted signals were detected by a flat broadband detector connected to a receiver

waveguide horn. The detector has a minimum sensitivity of 100 mV/mW. Signal detection was
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achieved by using the phase lock-in amplifier. The general schematic of the setup is shown in

Fig.6.

B- Periodic grating experiment

In this experiment, the M/A-Com GaAs sample was placed at 450 and reflective intensity

measurements between the polished samples and the sample with periodic lines of 2mm were

compared (see Fig.7). The lines were 2mm wide, 0.1mm thick and composed of cellophane.

The millimeter wave sweeper was swept from 140 to 170 GHz. Initial comparison showed a dip

at about 163.6 GHz in the reflected intensity for the sample with the periodic structure (see

Fig.8). To check for surface wave coupling, the receiver was placed at the edge of the sample

to obtain signal detection. The receiver detected two signals with strong intensities at 146.3

and 163.6 GHz (see Fig.9). The experiment was repeated with power leveling and with a

directional coupler and we obtained a sweep of a narrower bandwidth (158 to 164 GHz). The

results, as depicted in Fig.10, show a drop in intensity at 163.6 GHz for the grated sample as

compared to the polished sample. Also, there is strong detection of a signal at the edge of the

sample at the same frequency. Another experiment with d=1.5mm was conducted at 230.

Since the periodic length was not in the A/2 regime. very weak coupling was observed for this

case. The results are evident in figures 11-12. The reflection drop at 160.7 GHz is not as well

defined as in the previous case and the end signal detection is disturbed by noise levels as

strong as the signal itself. Another experiment was carried out with the enhanced gratings

being three times greater in height than in the previous case. The sweep frequency wa',

narrowed to a range of 158.4 to 164.5 GHz. The results are depicted in Fig.13 which shows an

increase in the number of end coupling peaks. In this case, the detection of the particular

coupling frequency is hampered by an increased number of harmonics or noise. This particular

experiment shows that a complicated diffraction and reflection theory would have to be taken

into account. Although a few very involved theories are published, to pursue these would be

too much of a distraction from our immediate desire of observing surface plasmon waves.
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Although there is a strong evidence of surface plasmon generation at 2mm of grating distance,

the height and shape of the particular grating structure influences to a high degree tile

detection procedure for the surface wave. A more practical and nondestructive method is the

prism coupling configuration which will be discussed in the next section. The grating coupler

dips obtained will be compared with the prism coupled surface wave in the w-3 diagram. The

reason for this is to eliminate any doubts in our grating data as to it being of higher or lower

harmonic origin. A comparison will illustrate the more accurate method of surface wave

generation for a particular frequency range. The final reasoning for not utilizing the periodic

structure method is the presence of the scattered of waves which contribute to a high level of

noise.

C- Prism coupling ezperiment

In comparison to grating couplers, prisms provide a non-destructive way of generating

surface plasmons. It also eliminates the need to worry about the complicated scattering

theories needed for grating profiles. So, Wood's anomalies should not be encountered as in the

previous experiments conducted using enhanced periodic structures. The method used in this

experiment is shown in Fig.14. The setup is referred to as the Kretschmann configuration [19].

This configuration differs from the traditional Otto configuration because the gap between the

prism and the metal is eliminated. To use this method, the thickness of the surface active

material has to be restricted to less than the order of the operating wavelength (usually A/10).

Since the wafer of the GaAs is 25mils or 0.0635cm, the operation in the frequency range of 110

to 170 GHz results in a surface active thickness of order of \/4.

When performing this experiment, the prism was separated by a distance of 16cm from

the source horn. This was to ensure far zone operation and plane wave incidence could be

assumed (2D 2 /\). Experiments were conducted for reflection angles of 370, 450, 510, and 570

at the prism base. Millimeter wave sweeps were performed for two bandwidths of 110 to 136

GHz and 136 to 159 GHz. Distinctive sweeps at four differing angles of incidence were
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performed. The experiments were conducted both with and without the GaAs. The data is

shown in figures 15 to 18 and the resulting sweep was nc.rnmalized to obtain the plane polarized

reflection coefficient for each case. As observed in figures 19 to 22, various minimums are to be

observed for the two bandwidths of 110-136 GHz and 136-159 GHz. Careful consideration of

these minimum points is required to interpret the data correctly. First, the obtained minimums

are used to calculate the propagation constant 8, which will help determine the correct

minimums when plotted against the normalized plane polarized reflection coefficient. The

obtained minimas were labeled and normalized to obtain the frequency of the minimum for

each angle of incidence. Theoretically, the surface plasmon wave is generated when the

reflection coefficient approaches zero. In the experiment performed, the minimum normalized

value obtained was about 0.05 or -13.0dB. As variation in the incident angle is introduced, the

reflection coefficient changes. The desired angle of observation is that which yields the

minimum reflection at a given frequency. For this experiment the accuracy of the angle of

incidence is limited to about ±20 and if a more accurate method of angular measurement was

available, near zero levels of normalized minimum should be observed. Some minimums will be

closely matched to the incidence angle and most points will be in the vicinity of this angle.

Interpolation of angles is necessary to yield the full continuous w-/0 curve.

In table I, the points A through M showed the most clearly distinguished minima when

plotted against the propagation constant. The minimum usually occurrs for the case of a 450

angle of incidence, with the only exception occurring for point M which was at 510.

Consequently, table I was plotted for four bandwidths as depicted in figures 23 to 26. When

the data was plotted in Fig.27 in the form of an w- 3 diagram, it showed a very close match to

the theory presented for highly doped GaAs material. The 'x' points indicate dispersion points

obtained using periodic couplers. It can be observed, that prism coupling provides greater

accuracy when performing the experiment.
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TABLE I

Experimental data for minimum reflection points

Frequency #3 / )3 83(rad/cm)

Point (GHz) (0=370) (0=.450) (0=510) (0=540)

A 115.49 23.29 27.37 30.08 32.46

B 116.38 23.47 27.58 30.31 32.71

C 120.20 24.24 28.48 31.30 33.78

D 122.93 24.79 29.13 32.01 34.55

E 127.13 25.64 30.13 33.11 35.73

F 129.23 26.06 30.62 33.66 36.32

G 130.04 26.23 30.82 33.87 36.55

H 131.49 26.52 31.16 34.24 36.96

1 135.86 27.40 32.19 35.38 38.18

3 141.80 28.60 33.60 36.93 39.85

K 145.05 29.25 34.37 37.78 40.77

L 151.89 30.63 36.00 39.56 42.69

NI 157.95 31.85 37.43 41.13 44.39
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The slight shift in the experimental data could mostly be accounted for by the errors

contributed during the angular measurements. It could also be due to inaccurate assumptions

of the refractive index of the prism (np=1.6). But it is not likely lor a variation in the

refractive index due to frequency dependence to be sufficiently large. In the periodic coupler

case substantial retardation was observed. The cause of this phenomenon could be attributed

to various causes. Wood's anomalies could contribute a major factor, but extensive studies and

experiments would have to be carried out to prove this.

Further considerations must be given of points not mentioned in table I and Rp vs. 63

figures. These are N, 0, P for the lower bandwidth of 110 to 136 GHz and Q, R, S for the

higher band of 136 to 159 GHz. The six points mentioned show strong reduction of Rp against

a frequency sweep. The lack of definite dips in the Rp vs. /3 plots prevent these points from

being analyzed with accuracy. Interpolation will have to be used to estimate the approximate

angle of incidence. In the case of point N, substantial reduction in the reflection coefficient was

observed for 0=510 than 0=450 . But at 0=450 there was still about 0.7 reduction of the

reflectivity, so the angle of incidence which would excite a surface plasmon would be closer to

510 but not by a large margin. The estimation for point N will be taken as 0=480, this can be

interpreted as for w=0.7825x1012 rad/s (f=124.54, point N) 8=31.01 rad/cm. This value is

slightly greater than the expected value, but it is within admissible margin of error. The same

evaluation applies to point 0 with an estimated 0 of 410, w=0.805xl0 1 2 rad/s at this point

with a 63 of 28.16 rad/cm. Point P is unique because, as the reflection angle is increased, the

reflection coefficient drops. It has a high value of estimated minimum and it is the first point

branching out into second curve for the dispersion relation. With an estimated 0 of 550, point

P yields to a propagation value of 38.5 rad/cm. The existence of a second mode becomes more

evident when points R and S show more than one excitation angle for a single frequency. Both

points R and S start at a minimum and increase to a maximum reflection around 450 and

drop back to another minimum at about 550 . This point will not be included due to this
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uncertainty. It is probably influenced by material absorption property rather than the

excitation of a surface wave. Finally, the tabulated data for the additional modal points are in

table 11, and the final dispersion curve ;ncluding these pcints, is depicted in Fig.28.

Table II

Additional data with second modal points into consideration

Frequency Minimum Angles 61 )2

Point (GHz) M 1  M 2  (rad/cm) (rad/cm)

N 124.54 480 --- 31.01 --------

0 128.10 410 --- 28.16

P 132.66 550 ... 38.50

Q Discarded Point

R 147.31 390 580 31.10 41.86

S 157.31 400 590 33.88 45.19

The second set of points to the right of the dispersion curve indicate another mode contributed

by the prism substrate boundary. Normally this mode is not observed in the optical regions. If

no major experimental errors exist, the only reasonable explaination for this mode is its

generation by the interface adjacent to the prism. Two methods of possible verification can be

suggested. First, increase the sweeper frequency to obtain a fuller dispersion curve. Second,

reduce the doping density to lower the plasma frequency. The latter will also have an effect as

to the range of the observable dispersion curve. If any hypothesis of the experimental errors

could be made, it will be mainly due to angular measurement errors. For example, the first

angle of incidence of 370 is very close to the critical angle of the prism. This error in measuring

and operating in the critical angle region could have contributed to the unexpected second

mode. The final suggestion for anybody repeating this experiment would be the use of a

goniometer or other accurate angular measurement device. Since our experiment, were carried
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out at room temperature, the next step would be to experiment under cryogenic conditions.

CONCLUSION

Surface plasmon generation was accomplished using quasi-optical techniques. Verification

was obtained through end coupling detection for the periodic coupler case, and generating Rp

vs. frequency and Rp vs. 0 plots for the prism coupler. A better match between theory and

experiment was obtained for the prism coupler. Through the experiments, the retardation

effects for periodic or grating couplers were observed. The difficulty in distinguishing the

correct harmonic was a problem when the profile height was tripled. Unlike the periodic

coupler, the prism coupler had the advantage of generating various propagation constants for a

given type of prism.

It has been shown that the non-destructive methods employed here not only is

convenient, but also provides a relatively accurate detection of the surface wave dispersion

characteristic. The additional mode encountered could prove to be an interesting topic for

further study. In the case of optical couplers for experiments conducted on metal surfaces, the

absorption levels of the prisms encountered in the optical regions prevent such modes from

existing.

Finally, the generation of surface plasmons at the frequency range of 110-160 GHz has

not been demonstrated before. The use of a highly doped n-type GaAs for such an experiment

is also a first. The gap between the optical and microwave field needs to be explored for

further advancement of millimeter wave devices and systems.
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V. FUTURE PLANS

With the satisfactory results achieved from the finite-element model for various dielectric

waveguides and also structures with isotropic semiconducting materials, the next step is to

introduce a dc biasing field in our two-dimensional structure employing semiconducting

medium to study the nonreciprocal behavior of the dispersion spectrum caused from the

interaction of the magnetic field with the plasma material. Both the embossed and embedded

waveguiding structures utilizing surface plasmon on III-V semiconducting compounds such as

InSb and GaAs are needed to be analyzed. Proper electrical and geometrical parameters are

required to achieve nonreciprocity in the near-millimeter frequency bands of 140 & 220 GHz.

The structures proposed here represent a suitable canonical model for design of quasi-optical

devices such as isolators, circulators, and phase shifters. Once theoretical predictions are

obtained from the finite-element formulation for component design in the near-millimeter wave

frequency range, we will have numerical results to compare against the experimental data.

The success in quasi-optical method of surface plasmon excitation and theory verification

for millimeter waves provides motivation for continued experimental research in this field. The

next logical step to follow would be on the improvement in measurement and parameter

control techniques to obtain a closer match between theory and experiment. Also an

interesting topic for further study is the second unexpected mode appearing in the

experimental dispersion curve due to the interface between the prism and GaAs. To verify this

mode, we may increase the sweeper frequency or lower the plasma frequency of GaAs via

reducing the doping density.

Loss measurements are desireable for the surface plasmon wave with specific attention on

the separation of the two modes observed in the experimental dispersion curve. The proposed

experimental setup utilizes the Kretschmann configuration to form decoupled modes at top

and bottom boundary of the semiconductor, and an Otto configuration to decouple the surface

wave. By varying the spacing between the two prisms of the configurations, the loss of the
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surface wave due to bulk attenuation of GaAs and air will be obtained and compared against

theoretical results.

Finall,,, the last step is to carry on the experimental procedure at cryogenic temperatures

with loss calculations. Once satisfactory results are achieved, the investigation of millimeter

wave surface polaritons in semiconductors in the presence of external magnetic fields are

required to develop quasi-optical nonreciprocal devices.
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Abstract

A finite-element formulation has been used to obtain the dispersion relation for a single

dielectric-semiconductor interface bounded by two perfectly conducting planes. This system

represents a suitable canonical problem for the design of non-reciprocal devices such as

circulators, isolators, and phase shifters. The finite-element solution for the dispersive behavior

was compared against the exact solution for the lowest real branches, and excellent agreement

was found between the two.
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INTRODUCTION

In recent years interest in various waveguiding structures in the millimeter (mm) and

submillimeter (smm) wavelength, i.e., 100-1000 GHz, has been growing. The development of

this technology requires a parallel development of more accurate computational techniques.

The finite-element method provides an attractive approach to the problem of obtaining the

dispersive behavior of the waveguide. The effectiveness of this method has led many

researchers to apply it to different electromagnetic field problems, [1].

The single dielectric-semiconductor interface model considered in this paper is a suitable

canonical problem for the design of non-reciprocal devices such as circulators, isolators, and

phase shifters. Propagation characteristics of structures used to obtain such circuit functions

have been analyzed in [2], [3).

THE WAVEGUIDING STRUCTURE

Consider the dielectric-semiconductor single interface sided by two perfectly conducting

planes shown in Fig. 1, with a superimposed finite-element mesh. A high quality n-type GaAs

material has been taken as the substrate for the semiconductor region. The system is assumed

to be exposed to a uniform d.c. magnetic field along the y-direction, with time-harmonic wave

propagation in the z-direction. Only TM modes will be considered in the present analysis since

TE modes do not have significant interaction with the semiconducting material.

We take the permeability po to be a constant for both regions. The permittivity f is a

scalar constant for the dielectric medium, but becomes a tensor for the semiconducting

material. For a biasing magnetic field in the y-direction, the dielectric tensor takes the

following form, [3].

0 -

=  0 0 (1)

ji 0
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where =c(o) WP2 (W-j* ) W(o) P .WP2WcW[(.-jz) 2 -wc 2 ] w(w-j v) , w[(W-jI) 2 _wc 2 ]

and Wp is the plasma frequency, v the collision frequency, and wc the cyclotron frequency,

wc-eBo/m*. For the isotropic case, wc=O and the tensor elements reduce to

- wP-2 and i7=0.__(= (Ww-jV)

From Maxwell's equations, uncoupled two-dimensional partial differential equations were

derived for ez. These equations have the common form

,9 z+M e z +M

ax + M1 a2 + M 2 ez=0 (2)

where M -^(72+w 2 OC) and M2=72 + W2 PO° °( 2-r/2)

for the semiconducting medium and M-=1, M2=-72 + W2 pococ, for the dielectric medium.

Moreover the magnetic field component hy is given in terms of ez by

h ( -Jw ( e z + 72 e) (3)
7 2 +W 2 PoCo 9X

in the semiconducting medium and

h -(Jwoci _) Oez (4)

in the dielectric medium.

The dielectric-semiconductor interface was taken to be lossless (v=O). Assuming there are

no y-variations (O/6y -:0), a TM mode solution exists in the vicinity of the interface

(components hy, ex, ez). The electromagnetic field boundary condition at the perfectly
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conducting plane requires that nxE=O. The dispersion relation is obtained from imposing this

boundary condition and requiring continuity of ez and hy at the interface. The result is

( ) Cth( k P ")=( 2 o Coth(k 2 P 2 ) - (oo (5)

with k1 2 = -72 - ko2 Cl; k 2 2= -,2 -ko2fe(w)

Here -y=a+j13 is the complex propagation constant, and ko 2 = w 2 oco, ce(w)= 2_7
2

Furthermore, a is the attenuation constant, co the permittivity of vacuum, C, the relative

dielectric constant of the dielectric medium, c(o) the static dielectric constant of the

semiconducting medium, fe the effective dielectric constant of the semiconducting medium, P1

the width of the dielectric medium, and P 2 the width of the semiconducting medium.

FINITE-ELEMENT FORMULATION

The finite-element mesh for this problem is shown in Fig. 1. The finite-element

interpolating functions utilized were those for the eight-noded isoparametric quadrilateral

element, [4]. Both the dielectric and the semiconducting regions were divided into three

equally-spaced elements. The finite-element equations were generated from equation (2) by

means of the Galerkin formulation

ff ( O2 ez + M1 2ez + M 2 ez) N9(xy) dxdy=O (6)A -- 19 
M

2 ay 2  Ni x Y(6

where the Ni(x,y) are the finite-element interpolating functions, and the index i ranges over

those nodal points at which the value of ez is not specified by the boundary conditions. We

now introduce the finite-element approximation ez=fN(x,y)]{ez}, where [N(x,y)] is the row

vector of interpolating functions and {ez} the co]umn vector of nodal point values. An

application of the divergence theorem now yields the finite-element equations in the form

75



LA) {ez - (xenx + M 1  fy) N1 ds=O (7)

The ij-th element in the coefficient matrix [A] is given by

ij= f x ax M1 -y y 2NNj) dxdy

.A

and is evaluated by 3x3 point Gaussian integration. The line integral in equation (7) is to be

evaluated around the boundary B of the finite-element mesh, and (nxny) are the components

of the unit normal vector to B. When assembling the finite-element equations from element

contributions, as is usually done, the integral is to be evaluated around the boundary Be of

each element. The boundary conditions ez=O at x=-Pl, P 2 , as well as the condition aez/ay=O

on the top and bottom sides of F, can easily be shown to lead to the vanishing of the line

integral along these portions of R. Moreover interelement compatability conditions between

adjacent elements in the same medium lead to a vanishing net contribution when the line

integral is evaluated over the common interelement boundary. This is not true, however, along

the interface between the dielectric and semiconducting regions, where special care must be

taken.

Let n be one of the three values of the index i corresponding to the three interface nodes.

Further denote the values of ez in the dielectric and semiconducting regions of ez ( 1 ) and ez ( 2 )

respectively. Along the interface we must have both continuity of ez, ez(1)=ez (2) , and the

continuity of hy. The latter condition, from equations (3) and (4), gives that

aez(1) _ e(2) (2)

Ox Ixo = (R __x + R 2 ez(2)) X =C (9)

where R 1 _ (2wpo 2 ) and R2(Jr )R
E1 ( 2+w 2 0 c0 )
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We now write the n-th finite-element equation separately for 'oth the dielectric and

semiconductor regions. These are, respectively (with summation convention implied)
Anj(1)ez (1) = Cdn

(2) (2) ( b (2) = Cdn (10)

where dn=f Nn(O,y) dy and bnj= Nn(O,y) Nj(0,y) dy. Eliminating C between equati,

(10) and requiring continuity of ez at the interface now yields for the n-th equations

( +n( 1) + R1 Anj ( 2 ) - R 2 bnj) ezj =0 (11)

Equations (11) represent the finite-element equations corresponding to the interface

nodes. The remaining finite-element equations have the form of equation (7), with the line

integral vanishing for these equations. When assembled, the finite-element equations have the

form [A*1{ezl=0. A nontrivial solution then requires that

I A* I = 0 (12)

which represents the finite-element dispersion equation for the problem. Given a value of w,

one may obtain corresponding values of - by standard numerical root-finding techniques.

RESULTS AND CONCLUSIONS

Equations (5) and (12) represent respectively the exact dispersion relation and the finite-

element approximation. Both equations were solved numerically using a standard technique,

the bisection method, for the following physical constants: €(°)=13, (1=1, wp=10 13 rad/sec,

wc=10 12 rad/sec, P1 =80pm, P 2 =100pm. Figure 2 shows the lowest positive and negative real

branches of the dispersion spectrum obtained from the exact and finite-element dispersion

equations for 1,1 <2, for a normalized propagation constant defined by D=P 2 0 and a

normalized frequency given by F=wP2 /c. It can be seen that the agreement between the two is

excellent. In fact, three-digit agreement was typically noted in the numerical results.

Figures 3 and 4 show the distribution of ez at two points each along the positive and

negative branches, one taken in the linear portion of each curve and the other in the flattened
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portion of the curve. The value of ez at the interface was normalized to unity. Again excellent

agreement between the results of the exact solutions and the finite-element approximation may

be noted.

To summarize, wve have applied the finite-element method to the problem of obtaining the

dispersion characteristics of a relatively simple, one-dimensional waveguiding structure.

Excellent results were obtained. The primary advantage of the finite-element method is, of

course, its ability to treat problems of practical interest involving complicated two-dimensional

geometries and correspondingly complicated electric and magnetic field distributions. The

results given here indicate that the finite-element method holds great promise for these

applications, and in particular for the analysis of complex gyroelectrically and

gyromagnetically loaded waveguiding structures.
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ABSTRACT

The dispersion relation and electromagnetic field distributions for a gyroelectrically

loaded waveguiding structure are obtained utilizing finite-element techniques. The structure

considered consists of two layers, one a dielectric and the other a semiconductor, bounded by

two perfectly conducting planes. The finite-element solution for the lowest real branches in the

dispersion spectrum was compared against a numerical solution of the exact dispersion

equation, and excellent agreement was found between the two. The structure, exhibiting

nonreciprocal behavior, provides a suitable canonical model for the design of circuit

components such as circulators, isolators, and phase shifters.
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1. INTRODUCTION

The use of surface magnetoplasmons on semiconductor substrates shows promise in the

development of components that can substitute for ferrite devices in the millimeter and

submillimeter wave ranges [1]-[31. Analytical studies of canonical structures employing surface

magnetoplasmons have been reported in [4]-[6]. As the geometry of gyroelectrically loaded

waveguides becomes more complicated, the problem of obtaining the dispersive behavior and

the distribution of field intensities in the structure demands more sophisticated techniques.

One particularly attractive means of dealing with this problem is the finite-element technique.

This method has been successfully applied to microwave and optical waveguides, e.g., [7]. In

this paper, we present a finite-element formulation for TM-mode wave propagation in a

dielectric-semiconductor waveguide.

II. THE WAVEGUIDING STRUCTURE

We consider the two layer dielectric-semiconductor structure, sided by two perfectly

conducting planes, shown in the insert of Fig. 1. A finite-element mesh is shown superposed.

The thickness of the dielectric layer is taken to be P 1 , while that of the semiconductor layer is

P2. The substrate for the semiconductor region is assumed to be a high-quality, moderately

doped n-type GaAs material with a carrier concentration of n_2.1x1015 cm - 3 , equivalent to a

plasma frequency of wp=1013 rad/s. The permeability p is taken to be a constant for both

regions. A uniform dc magnetic field corresponding to a cyclotron frequency wc=10 12 rad/s

(B,=3810 G) is assumed to be applied parallel to the interface. For a biasing magnetic field in

the y-direction, the permittivity 4 remains a constant for the dielectric medium, but becomes

an asymmetric tensor for the semiconducting medium, [41-[6], having the form

(2(w) 0 0 (1)
j/ 0

where =c(o) Wp2 (WJ) (o) p 2 = wp2Wc
herew[(w-Jw) 2 -wc2 ] , -_(o) w(w-jv) ' w[(w~jv)2_Wc21
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Here, c(o) is the static dielectric constant of the semiconducting medium, w is the frequency of

electromagnetic wave propagation, and v is the collision frequency. Finally, the semiconductor

and dielectric here are taken to be lossless, implying v=O.

In the present analysis, we will consider only TM wave modes, because TE modes do not

exhibit interesting interactions with the semiconducting material. This implies that only the

hy, ex, and ez field components are nonvanishing. We now assume time-harmonic wave

propagation in the z direction with frequency w and propagation constant yf=a+j3, so that

ez=ez(x,y) ej ' t - z . With these assumptions, an uncoupled partial differential equation may be

derived for ez from Maxwell's equations. This equation has the general form

a2e+ M eza 2 + 18y2 + M 2 ez=O (2)

where for the semiconducting medium

M ((y 2 +, 2 P°) 2 W2 ip°c°( 2 772)1 = +w21loo() 2 =7 +

and for the dielectric medium
M1=I M2 =7 2 + w 2 PcO.

Here, fo and po are the vacuum permittivity and permeability, and cl is the relative dielectric

constant of the dielectric medium.

The waveguiding structure shown in Fig. 1 is, of course, strictly one-dimensional, so that

O()/y=O. Solving Maxwell's equations and applying the boundary conditions at the planes

and at the interface, we obtain the dispersion equation, which is

(LI-) Coth(kPi)=( k2+W ( Coth(k 2 P 2 ) - ( i * ) (3)
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where
22

k 2= -2-  k 2(1 k 2
2 = - y- ko 2 e(w ) k 2 =w 2,o o  fe(W ) = - 7--

III. FINITE-ELEMENT FORMULATION

Because the governing equation (2) for the ez field component is uncoupled and because

the other field components are easily expressible in terms of ez through Maxwell's equations,

ez was chosen as the dependent variable for the finite-element formulation. For the sake of

generality, the finite-element equations will be derived in two-dimensional terms using (2),

even though the problem to be treated is strictly one-dimensional. In the present case, the

finite-element equations are most conveniently generated by means of the Galerkin

formulation. This yields

J. (O,2 ez+M 92ez-'- + M 2 ez) Ni(x'Y) dxdy-O (4)

A x 2  
y2

where the Ni(x,y) are the finite-element interpolating (shape) functions for the problem, and

the index i ranges over those nodal points at which no geometric boundary conditions are

imposed for ez. The interpolating functions are used to approximate ez(x,y) in the following

manner: ez(x,y)=[N(x,y)]{ez}, where [N(x,y)] is the row vector of interpolating functions and

{ez} is the column vector of nodal point values. An application of the divergence theorem now

yields the finite-element equations in the form

[T] fez}- k x n( + M 1ez ny) N i ds=O (5)

The ijth element in the coefficient matrix [T] is given by

T ( N i Nj + N Nj _ M2 NNj) dxdy (6)TO=f f O-x OX +  9 a: y 0-

A
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The line integral in (5) is to be evaluated around the boundary 13 of the area .A under

consideration, with (nx,ny) being the components of the unit normal vector to B. The finite-

element equations are assembled from the element contributions to (5), the boundary integral

being evaluated around the boundary Be of each element. It is not difficult to show that the

line integral vanishes everywhere except along the interface between the dielectric and

semiconducting regions, where special care must be taken. Let n be one of the values of the

index i corresponding to the interface nodes. Further, denote the values of ez in the dielectric

(D (2)and semiconducting regions of ez(1) and ez 2 , respectively. Along the interface, we must have

both continuity of ez, ez(1)=ez(2) and continuity of hy. The latter condition, from Maxwell's

equations, gives

(1) 2tez ( Oe z(2) ( 2 )

x = + R 2 ez) -- 7C (7)

where

1 (- 2 +w 2POEoc) R

We now write the nth finite-element equation separately for both the dielectric and the

semiconducting region. Taking account of the fact that n,=+l, ny=O along the interface, and

making use of (7), we have, respectively (with summation convention for repeated subscripts

implied),

Tnj ( 1 ) ej ( 1 ) - - Cdn 8

T. (2) e(2)_ (! 2 ) bj ez(2) = Cdn

where

dn- Nn(O,y)dy bnj=J Nn(O,y)Nj(0,y)dy.
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Here 6 and -6 represent the y coordinates of the nodes on the top and bottom of the elements,

taken to be b=15pm. Eliminating C between (8) and (9) and requiring continuity of ez at the
interface, ezn( ezn ( , now yields for the nth equation

(Tnj ( I ) + RiTnj (2) - R2 bnj) ezj =0 (10)

Equation (10) represent the finite-element equations corresponding to the interface nodes.

The remaining finite-element equations have the form of (5), with the line integral vanishing

for these equations. It is worth noting that the inclusion of the terms with coefficients R1 and

R 2 in (10) renders the resulting finite-element coefficient matrix [T*] nonsymmetric, even

though the basic coefficient matrix [T] in (5) is symmetric. When assembled, the finite-element

equations have the form [T*]{ez}-0. A nontrivial solution then requires that

I T =0 (1)

Equation (11) represents the finite-element dispersion equation for the problem. Given a value

of w, one may obtain corresponding values of -y by evaluating [T*j numerically and employing

standard numerical root-finding techniques.

IV. RESULTS

Numerical results for th.e dispersion spectrum, using a numerical root-finding technique,

were obtained from both the exact dispersion relation given by (3) and the approximate finite-

element formulation given by (11). Two different combinations of layer thicknes _s were

considered. In case (1), P 1 =80pm and P2 =lOOpm, and in case (2), P,=320pum and P 2 =50pm.

Furthermore, it was assumed that cl=l, (O)=13. For the finite-element analysis, the two

layers were divided into three equisized elements (Fig.1) using eight-ncded isoparametric

quadrilateral elements. Fig.1 shows the resulting dispersion spectra for both combinations of

thicknesses in terms of a normalized propagalioi, constant defined by 0:P 2 03 and a norm,-lized

frequency given by ZD=wP 2 /c, where c is the velocity of light. Nonreciprocal effects are evident

in both branches of the spectrum. It can be seen that excellent agreement exists between the

spectra computed from the exact dispersion relation and the approximate finite-element result.
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At low frequencies, a reverse-propagating mode was obtained in both cases, with the bulk

of its energy traveling in the semiconducting medium. For small values of L, this branch

becomes asymptotic to the light line of the semiconducting medium; i.e., -.- / \V)as

M--*O, where (o) is defined by: & o)= (O)+(Wp/Wc) 2 . The absence of a forward-prpagating

mode over this frequency range may be explained through examining the configuration of the

field distributions shown in Fig.2(a). If such a mode existed, most of its energy would need to

be concentrated in the semiconducting medium and to be traveling in the positive z direction.

The field components of the dielectric medium would display the same behavior as those

derived for the reverse mode. To justify the direction of the signal, the ex component should

exhibit a negative amplitude in the semiconducting medium. But for the given electrical

parameters of this problem, the tensor elements and 77 yield positive values and these

conditions do not allow the fulfilling of the continuity of the normal component of the D field.

Consequently, there exists only a unidirectional mode, which propagates in the reverse

direction over this frequency range, i.e., F<0.17. When losses are introduced, this mode will

suffer sustantial attenuation; therefore, the remaining branches of the spectrum are the ones of

primary interest.

In both cases, the lower branches of the forward and reverse propagation modes become

asymptotic to the light line, i.e., --'± as D-O. However, for higher frequencies, the forward

mode extends into a region where the quantity k2
2 becomes negative. In this region, the

transverse field components have a trigonometric variation in the semiconducting medium. The

upper branches lie entirely in this region, and are called the "volume" modes [5], [6].

Also observed in case (2) is a change of slope in the lower branch of the reverse-

propagating mode. This may be understood through the field displacement behavior of the

mode in the structure. Here, unlike case (1), the transverse component of the magnetic field

clings to the plane at x=P 2 for 3<-0.6, as shown in Fig.2(b). For this portion of the branch,

the direction of the energy flow is reversed, and with the energy traveling in the positive
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direction, a change in the slope of the branch is obtained.

Of interest is the fact that there exists a frequency band above the lower reverse mode

which contains only a forward mode. This offers the possibility of designing components such

as isolators and circulators having a small attenuation constant when losses and a more

realistic geometry are considered. For the particular set of geometric and electrical parameters

used here, this frequency band was calculated to be 358 GHz<f<411 GHz for case (1) and 377

GHz<f<396 GHz for case (2), with the former case having a 15-percent bandwidth.

Fig.2 shows the modal field distributions for the components (ez, e,, hy) derived from

both the exact and finite-elements (F.E.) solutions. Here, for comparison purposes only, the hy

component was normalized by the factor 07o for the lower branch and by the factor 770110 for

the unidirectional branch, where i0-=376.82 f0 is the impedance of free space. The value of ez

at the interface is normalized to unity. For the linear region of the lower branches in both

cases, most of the energy is seen to be contained within the dielectric medium, while the

energy is essentially uniformly distributed throughout the structure as these branches move

away from the light line. The upper branches in case (1) also exhibit similar energy

distributions, but the behavior of case (2) is somewhat different. Here, the bulk of the energy

shifts to the semiconducting medium, while at the very low end of the upper branches a fairly

uniform distribution of energy may be noted. Finally, the field structures of the components

(ez, ex, hy) derived from the finite-element formulation are shown in Fig.3 at time t=O. These

patterns do not attempt to show the relative field strengths, but only the directions. However,

the relative field strengths between the two media can be observed in the previous figure.

V. CONCLUSIONS

A numerical analysis based on the finite-element formulation has been presented for a

canonical, one-dimensional, gyroelectrically loaded waveguiding structure. The agreement

between the finite-element solution and that obtained from the exact dispersion equation can

be seen to be excellent and was, in fact, good to three significant figures. The primary
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advantage of the finite-element method is, of course, its ability to treat problems of practical

interest involving complicated two-dimensional geometries and correspondingly complicated

electric and magnetic field distributions. The results given here indicate that the finite-element

method holds substantial promise for such applications, and gives the necessary confidence for

its use in the analysis of electromagnetic wave propagation in much more complex

gyroelectrically and gyromagnetically loaded waveguiding structures, where exact methods of

analysis are not available.
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APPENDIX C

"TWO-DIMENSIONAL FINITE-ELEMENT ANALYSIS OF RECTANGULAR

WAVEGUIDES WITH ISOTROPIC n-TYPE SEMICONDUCTOR MATERIAL"

(To be submitted to IEEE Transactions on Microwave Theory and Techniques)
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I. INTRODUCTION

Finite-element analysis of dielectric waveguides used in design of millimeter-wave and

optical integrated circuits has attracted the attention of many researchers in recent years [1]-

[8]. A powerful and versatile technique, the finite-element method can be applied to anisotropic

waveguiding structures with arbitrary shaped cross sections to obtain the propag:,tion

characteristics and field distributions in the waveguide. However a serious drawback is the

appearance of non-physical, spurious modes in the calculated dispersion spectrum of the

dielectric waveguides which do not satisfy the divergence-free condition on the magnetic field

vector, i.e., V.H=0, [2]-[5]. A number of efforts have been made to suppress or eliminate these

non-physical solutions by various methods [3],[63-18].

In this paper we present a finite-element formulation in terms of the transverse

components of the magnetic fields to investigate the propagation characteristics of two-

dimensional gyroelectrically loaded waveguides. Spurious modes are eliminated by the direct

inclusion of the relation VeH=0 proposed by Hayata et aL., [7]. These configurations use

surface magnetoplasmons on high quality semiconducting substrates, and have applications to

the design of quasi-optical integrated non-reciprocal devices in the millimeter (mm) and

submillimeter (smm) wavelengths.

Extensive analytical and numerical studies of planar one-dimensional canonical structures

employing surface magnetoplasmons have been carried out previously [9],[10]. However, as the

geometry of such models becomes more complex, the problem of obtaining the dispersive

behavior requires more powerful numerical techniques such as the finite-element method. A

finite-element formulation for one-dimensional problems involving surface magnetoplasmons on

semiconductors has been presented by the authors in [11]. The purpose of the present work is

to extend this to the analysis of two-dimensional structures.
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II. FINITE-ELEMENT FORMULATION

We consider an embossed waveguide as depicted in figure 1., with a doped n-type InSb

material as the semiconducting substrate overlaid on the dielectric medium. The structure is

enclosed by perfectly conducting planes. The permeability is taken to be a constant for all

regions. When exposed to a uniform d.c. biasing field in the y-direction, the permittivity

remain- a scalar constant for the dielectric and vacuum regions, but becomes an asymmetric

tensor for the semiconducting medium

2() [ 0 J j (1)
J77 0

w =r(o) W 2 (w-jv) (o) WP2  2
w[(wjv) 2 .wc 2] w (w,-j v) ' W[(Wjv) 2 _wc 2 ]

Here c(°)is the static dielectric constant of the semiconducting medium, w is the frequency of

wave propagation, v is the collision frequency, wp is the plasma frequency, and wc is the

cyclotron frequency. The electromagnetic wave is assumed to travel in the z-direction. For the

isotropic case, Wc=O, resulting in
(C0 WP2 and rj=0.

- w(w-jv)

Finally, the semiconductor and dielectric are taken to be lossless in this analysis, implying

v=O. Maxwell's equation for the magnetic field components then takes the form

V x ( [(w) 1 V x H ) _ , 2 Po 0oH = 0 (2)

Here yo and Co are the vacuum permeability and permittivity and ([(w)] is the permittivity

tensor.

For the finite-element formulation, the two-dimensional domains romprising the vacuum,

dielectric and semiconductor media are divided into quadrilateral elements, where the unknown

quantities, in this case h×, hy, and hz components of the magnetic field intensity in the
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structure, are represented by interpolating functions that contain the values of the field

intensity at the nodes of each element. The use of all three components of the magnetic field

vector as the dependent variables is possible because H is continous across the interfaces in the

structure.

A Galerkin formulation was used to generate the finite-element equations from

multiplying the equation in (2) by interpolating functions Ni(x,y) and integrating over the

different regions of the waveguide denoted by A, [11], where the index i ranges over those

nodal points at which no geometric boundary conditions are imposed for components of H

field. These components were approximated in the following manner: hx(x,y)=[N(x,y)]{h,

hy(x,y)=[N(x,y)]{hy}, and hz(x,y)=IN(x,y)]{hz}. Here [N(x,y)] is the row vector of

interpolating functions and {h} is the column vector of nodal point values. Divergence theorem

was then used to derive the final equations in (3). The complete derivation of this is presented

in the appendix. It may be noted that the contour integral associated with the application of

divergence theorem vanishes due to the continuity of components of electric field.[[B] [C] [D) 1[hx}1
[C]T [E] [F] •{h} = 0 (3)

[D]T [FIT [GI ] [hz}J

here T stands for transpose and the coefficients of matrices in (3) are given by

B J (2N- O i[) dN i  (4)

iiN aN i ay

Cij = < P3-N- Nj 't - - 0' j-) drdy(5

A

ff ON.iONj ONj

Di JJ "  N. Oy 2  Ni  (6)
A

E =r 3[ 0W. N + N1 -- j + l[L L-j + N Nj] - (7)2 NiNj )dzdy (7)
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Fi fJf(<)3 N +'I1 N - ) ddy (8)
A

aNi Nj + 0 i 0Nj _-F)
GU Jf f 42'~41 'P(2 N1N ) ddy (9)

Here D and f are the normalized frequency and propagation constant, respectively, given by,

D=wt/c, ,=gt, where t is the height of the semiconducting medium and c is the velocity of

light. The coordinates x and y were also normalized according to R=Ix/t and y=4y/t. For the

semiconducting medium 01, t2 and 03 take the form

21 (2/ I 2- 'D¢3
=  

2_ 17 2

For the dielectric region, we have 4)= 02= 1 and 30, where c, is the relative dielectric

constant of the dielectric medium.

The finite-element dispersion spectrum obtained from the system in (3) includes spurious

solutions. Therefore, we adopted the method employed by Hayata and coworkers [7] to include

the finite-element equations derived from the relation VeH=O in our formulation to eliminate

the spurious solutions. Upon application of Galerkin technique to the divergence free condition

of magnetic field the equations in (10) were obtained [7).

[hy}= •[ [T x] [T,]] h] (10)

Here [U] is the unity matrix and the elements of other matrices are

Tzij= JJ NiNJd~dy, Tx.J= - ff Ni- ,ddy , Ty- = NLa dgdy

Substituting the equations in (10) into our previous results, (3), and multiplying by the

transpose of the coefficient matrix in (10), the final finite-element equations were generated in

terms of the transverse components of the magnetic field for which the dispersion spectrum
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does not contain spurious modes.

where

[U _T -r [E]C][F] (12)

[S] [Tz]1 [T1L [By ] [C] [E] (F K z [U[Tx [Ty] (2
|D]T [FIT [][

It should be noted that the matrix [S] is a full symmetric matrix, moreover the system of

equations in (11) do not constitute a standard eigenvalue problem. However, nontrivial

solutions require that the determinant of [S] must vanish. Given a value of , one may obtain

corresponding values of 7 by evaluating this determinant numerically and employing standard

numerical root-finding techniques.
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APPENDIX

In this section we will demonstrate the derivation of the system of equations given in (3)

from the Maxwell's equation in form of (2). Rewriting this vector equation in terms of the

magnetic field components and applying the Galerkin technique, the following results are

obtained

f( -. ,02hz 02 hy$ (O 2hx) (2hx -2hz)
J A - Yy xZ 2 "zax

(W)2hx) Ni(x,y) dxdy (Al)

S(, (0hz O2hy . O2hy 02 hx ..A. 02hz - 2hy.

-z -)+)+ (-

Jf 14 (D~ - 7 -F -a aa axey 77xaz

A

O2 hy O2 hx w2

-z(- -x2 -Ox-y- y ) •N 1(x,y) dxdy (A2)

E]- -ixY

(L) 2 h) j Ni(xy) dxdy (A3)

where the Ni(x,y) are the finite-element interpolating functions and the integrals are taken

over domain A of the problem. The components of the magnetic field are approximated in the

following manner: hx(x,y)=[N(x,y)].{hx}, hy(x,y)-[N(x,y)].{hy} and hz(x,y)=j{N(x,y)].{hz}.

Then divergence theorem was used to generate the finite-element equations in the form

[B-{hx}+[C.hy+[D.hz}+ -j 3  - ny N i dl (A4)
ay (j a z Ohy 1y h-

(C]T '{hx}+[E].{hv}+[F]'{hz}+ (i( y z. )-?(Ohyx Oh)) nx N i dl (A5)
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[D]T'{hx}+[F]T{hy}+[G]'{hz}+ ( l( - 'y)+ 3(A L-)) nL y jN dl

z4>2( !x 
) n, i Ni dl (AG)

The i, jth element in the matrices [B], [C], [D], [E], [F], [G] were given in section 11 and

the line integrals in equations (A4), (A5), and (A6) are to be evaluated around the boundary

S of the area A under consideration, with (nx, ny) being the components of the unit normal

vector to S. From Maxwell'c equations it can be easily shown that the terms of the line

integrals of (A4) and (A5) represent the ez component, while the line integrals of (A6)

represent the ex and ey components of electric field, respectively. Now with the continuity of

ex, ey, and ez along the proper interfaces, one can derive the elimination of the line integrals

which are to be evaluated around the boundary of each element between two different media.

It is also not difficult to show that the line integrals vanish at the enclosed planes according to

the boundary conditions. Once assembled, the finite-element equations have the form given in

(3).
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THEORETICAL AND EXPERIMENTAL STUDY QF SURFACE PLASMON AND

MAGNETOPLASMON MODES IN SEMICONDUCTORS

C.J.Wei, and D.R.Decker,

CSEE Department, Packard Lab.19, Lehigh University, Bethlehem, PA 18015

This report briefly presents the results of investigations on surface plasmons and surface

magneto-plasmons on surface of a semi-infinite semiconductor or slab of material, either a

uniform bulk medium or a medium with 2-dimentional(2DEG) carrier gas at the surface. The

work is a continuation of the project carried out by previous investigators, Prof.Bolle and T.

Hwang. The intentions of this report are twofold. First, we extend the theoretical study of

surface plasmon modes and magnetoplasmon modes to the case of various magnetic-field-to-

surface-direction configurations and the case taking into account the interaction of surface

plasmons with a 2D electron gas (2DEG) of a semiconductor near the submillimeter band. It

represents our efforts on exploration of novel 2DEG non-reciprocal devices at near-millimeter

bands, where the frequency is too low to be useful in a conventional bulk semiconductor in

comparison with the carrier relaxation rate even in the case where it is cooled down to 77 K.

The mobility of a 2DEG in GaAs-AIGaAs heterostructures with moderate carrier density has

been achieved up to 5x10 5 cm2/Vsec at 77 K and 4 million cm 2 /Vsec at 4.2K in contrast to

about 5x10 4 cm 2 /Vsec at 77 K and 2x10 5 cm 2 /Vsec for pure bulk GaAs material. While

intensive carrier relaxation in bulk material causes heavy loss of rf power which severely limits

the usefulness of the plasma effects in real applications, the superior mobility properties of

2DEG layers, as an alternative, may be promising for this purpose. Secondly, we extend the

study of magnetoplasmons for various relative orientations of the field, wavevector and surface

to investigations of the field-dependence of dispersion properties. So far, attention has mainly

been restricted to the so-called Voigt geometry, in which k is at right angles to Ho, and Ho is

in the surface plane. Finally we present a new approach to the excitation of surface plasmons.

Surface plasmon is featured with its sensitivity to the variation of surface conditions, since the

confinement of electro-magnetic waves at the surface is considerably improved to the

conventional bulk or slab modes. Any EM wave devices using 2DEG surface plasmons depend

on an intensive interaction of EM wave with surface 2D carriers. We'll examine the

requirements on material parameters and xitation conditions in order to realize surface

plasmon modes with higher confinment factors. A simple yet effective new approach for

excitation of the surface plasmon mode and a method to detect the modes existing in the

semiconductor waveguide are proposed.



This paper is divided into four parts. First we give a survey of surface pIl;i,..iioe it

semiconductors. Secondly we describe magneto-plasmons for various field orientation

configurations and give the conditions for exisistence of surface magneto-plasmois. Thirdly. wec

propose a new approach for excitation of surface modes. A detection technique u1, iign 'Pcl -

harmonic analysis is given. Experimental results are presented. Finally we draw -olic.

conclusions.

1. SPACE SURFACE PLASMON MODES IN A SEMICONDUCTOR. SLAB WITH O.

WITHOUT 2DEG

A detailed study of surface plasmons in a homogeneous semiconductor has been given by

Bolle et al and R.F.Wallies [1, 2]. M.Nakayama presented an elementary treatment of surface

polaritons and plasmons for the case of surface charge sheet conductance, typically, caused by

a 2DEG located at the interface of the semiconductor and surrounding dielectrics. Here we

directly quote their results without going into the details.

1.1 Effective conductivity of a bulk semiconductor and surface conductivity of a 2DEG

The Drude expression of effective conductivity of a bulk semiconductor at high frequency

reads as

q-N d  1 (1)
a = 7 (j-w + yn) m

where vm is the momentum relaxation rate and so dp , the plasma frequency is expressed

by:

wp 2 = (q 2 Nd/come) (2)

The term jw accounts for the carrier inertial effect and in derivation of the expression, energy

relaxation has been neglected and the semiconductor is assumed to be isotropic and uniform.

The effective dielectric consstant is therefore expressed by

eff = r (o+ a/j (3)

For a 2D carrier gas there is also a similar expression for the surface conductiitv

corresponding to the charge sheet conduction in the interface. If we replace the carrier

concentration Nd with surface carrier density Ns in cm-.

1.2 Dispersion equation for a slab of semiconductor with 2DEG on the surface

The dispersion equation for a slab of semiconductor surrounded on both sid,,, hY idw.jic

dielectrics with surface conductivity s o l the upper su rfaces is found b .ol vil i \ lax ,'1



equations and matching the boundary conditions on the surface. The dispersion relatiuii for

TNt Modes can be obtained from the following simultaneous transcedental equations.

(c ff/al+o/ao)( %ffC l+o/o/'s/J L) (-1)(( eff /cl.(O/0O)((eff /al.(O/ao+as/jLw))= exp( - 2o 1,)0

wl2= k -effW(5)

ao =k 2 - Co2/C2  (6)

where the parameters cr 1 and ao represent the transverse attenuation factor respectively in tie

slab and the surrounding dielectrics. For a guided slab mode, o1 is required to be imaginary

while oo is real. To obtain surface mode both a, and a o are required to be real. L is the

thickness of the slab. The dispersion equations are also available and will not be given here

since they have less utility for nonreciprocal devices.

When Re(oIL)>>1 the dispersion is reduced to that corresponding to the single inteface

case.

feff/al+IO/aO= for the surface mode at the bottom surface (7)

(eff/al+Eo/Oo=as/jw for the surface mode at the upper surface (S)

The first expression gives the normal surface plasmon for a single interface of a bulk

semiconductor. The second one is the surface conduction supported plasmon mode also for the

case of a single interface.

On the other hand, the expression reduces to that of the conventional slab mode for dielectric

waveguide, when the surface conduction vanishes as=O.

The solution of the dispersion equations can be obtained for various modes, namely slab

modes and surface modes for different material parameters. In order to satisfy the requirement

of lower loss with a view toward applications. higher mobility Of 50,000 cm2 /\"sec is assumed

throughout the calculations. First the solution for slab modes shows the attenuation of FM

waves is practically independent of the surface conduction and decreases with frequency imd

bulk carrier concentration. These results can be understood since the E.M energy is distributcd

over the slab and the interaction with surface carriers is therefore very weak. The (lecreau- of

loss with frequency is expected because of the re(diced effect of relaxation. Fige 1i(a) and (b)

gives the effects of Nd on the dispersion relation-propogation factor 3 and attenuation Nactor,(

versus frequency , from which the loss increase with increasing Nd is apparent. Figures 2 ;mmd 3



give the dispersion relations for a conventional surface mode supported by bulk cariir

conduction. We are interested particularly in the condition of greater localization of E.I wavv-

on the surface, namely a greater confinement factor. From expressions (5) and (6). it is rc';-dily

seen that the greater localization can be only realized when both a, and two are large, ur iIh.

propogation constant 03 must much higher than 3o. In the case of vanishing carrier relaxation

this condition is readily satisfied at surface plasmon resonance, Ws= W /(l+fr I), where 3

approaches to infinity. However with carrier relaxation taken into account, the condition is

only partly satisfied when the bulk carrier concentration is chosen in a marginal range . With

higher carrier concentration, the EM energy spreads over the surrounding dielectric and

penetrates into the slab a skin depth. In this case, the confinement is poor and the surface

plasmon velocity approaches that of light in vacuum, very similar to the surface mode in

metal. The material with too low carrier concentration can obviously not support a surface

mode. The range of carrier concentrations to give higher confinment is estimated about 2.5--5

1014/cm 3 at frequency of 120-170GHz.

On the other hand, the 2DEG supported surface plasmon modes have the feature of greater

confinement and stronger interaction with the surface carriers. Figures 4(a) and (b) give the

calculated results of a 2DEG supported surface mode verses Ns.. Again mobility of 50.000

cm2/Vsec is assumed. The propogation constant 0 is much higher than /3 o and the

attenuation increases with N s.Fig.5 plots the dispersion and attenuation vs. frequency for the

same parameters. The higher attenuation represents a stronger interaction of the surface mode

with surface carriers. However the loss can be expected to be greatly reduced if mobiiity' is

taken to be higher than 106 cm 2 /Vsec. Moreover, higher gain can be obtained when the 2DEG

posesses a gain mechnism, as proposed elswhere by the authors [ 4 ].

The critical requirements on the material parameters, namely the carrier concentration and

mobility, however, present limitations un the usefulness of surface plasmon modes and

experimental difficulties at the near millimeter bands.We will discuss this point later.

2. SPACE MAGNETOPLASMON MODES IN A SEMICONDUCTOR SIAB, SURIFACE

MODES OF A SEMI-INFINITE MEDIUM

(1). Dielectric susceptibility tensor of a semiconductor

The plasma properties of a bulk semiconductor in the presence of DC magnetic field ale

characterized by a dielectric susceptibility tensor (eff' and we assume that the hulk

susceptibility characterises the entire specimen up to the surface. The (eff tensor i, detiV,4l

from the carrier equations govering the carrier nuoveuilent which is subject to a Lorentz fuic,

Fm= q ( v x B) (9)

and is given by



eff = r I + 1/jW a (10)

where o is the conductivity tensor of the bulk semiconductor which has a gyroelectric ftorI

given by[1 t -O0h 01
or = J h Oat (1

0 0 ap

at Wp2 ( j w +-rn)/( (jw + vrn) 2 + Wc2 ) (12)

a h  Wp 2Jwc/( (j, + vm)2+ WC) (13)

7p= Wp2 /( jw + Lm) (14)

where the magnetic field is assumed to be in the :-direction and the specimen is otherwise

isotopic. The wc is the cyclotron resonance frequency and is given by wc = q B / me*.

For the case of a 2DEG system the surface conductivity is characterized by a 2D-tensor in

the plane of the interface when the magnetic field is normal to the surface and the normal

component of the conductivity vanishes due to confinement of th- surface carrier movement.

When the magnetic field is parallel to the surface the tensor becomes diagonal one.

The susceptibility tensor is diagonized in the rotating-wave coordinate system, e+.=ex+ j ey

and e-= ex - j ey with the diagonal components of o+=at+a h and a_ =a t- ah . In this case

an incident, linearly polarized EM wave undergoes a rotation of polarization with distance,

which is called the Faraday effect and the corresponding modes are called Helicon mord 's.

(2). Dispersion equation in an infinite and homogeneous medium

The discussion of magneto-plasmon modes in bulk or layered media is a matter of solving

Maxwell's equations with boundary conditions when the medium is specified by the

susceptibility tensor. Interest is not restricted to geometries in which surfaces are present; even

the solutions in a bulk medium are of some complexity [ 5 1.

Maxiwell's equations. when the susceptibility tensor is incoorporated . are written as

curl (E) = - j,, B (15)

curl (II) = j. (cffE (16)

div (D) = p D = roE (17)

div (B) = 0 B= 1moll (IS)



Combining the equations we have:

curl ( curl E) - 002effE=0 (19)

where 3c2= W2/ c2 . Note that ceffE is tensor product. Substitution ol 11 oo exp (j.,t - j kr)

leads, eventually, to the dispersion equation w versus k.

det I ( kik. - 6ijk2) + go')effI = 0 (20)

For various orientation of the DC magnetic field with respect to the wavevector the solutiolts

differ from each other. For the case that the magnetic field is perpendicular to the wavevector

we have

k2 _ 0o2e= 0 (21)

and fe= C t ah 2 / (t is the effective dielectric constant, where ct= CrEo + at/ i.
For a real device design, layered structures on a semiconductor substrates are both lure

practical and preferable. The loss in the bulk semiconductor is reduced due to the smaller

volume of bulk material in layered structures. In this way, it is necessary to acquire strong

interaction between the EM wave and the layered structure or a wave guided along the

interface is required. In what follows we discuss the magneto-plasmon modes in the .implest

layered structures: magneto-plasmon in a slab and semiinfinite semiconductors.

(3). Magnetoplasmons in Voigt Configuration

In the Voigt configuration, Ho is at right angles to the wavevector k and is in the plane of

the interface of layered structures. This is the most useful geometry for design of non-

reciprocal devices. Ve discuss the simplest layered structure: a slab of thickness d surrounded -

by air dielectric as shown in fig.6. We are only interested in TH modes and the TE modes are

of no concern since nonreciprocity occurs only if the electric field is partially circular-polarized

with respect to the DC magnetic field. The solution of Maxwell's equations is obtained by

setting the boundary conditions at the interface and at infinity. The fields %anish at infiniti

and the boundary conditions at the interface are continuity of the tangential coluponets of V-

and discontinuity tangential 11 set by the surface conduction as follows:

Elx= Eqx and lilz- 11.2z = - ix = astEx (22)



where TH modes are under consideration and propogation is in the x direction ,llid v I Ih,

norrial direction to the surfaces and aSt is the surface transverse conductivity ot Il,, 21)1.

For TI modes we have only the field components: Hz, Ex and Ey. Note that th,: 1"\

component is related to Hz by

(tEx + JahEy (23)

Assuming that the wave in the medium has the form of exp(jwt - jf3x + aly), we have.

eventually, the solution of the dispertion relation:

(-Ol/e+ gah/((t 2-ah 2- o/(Eo* 6))(/Ee+ '3h/( _ t - a h ) + aol/o)
(-ai/Ee+ /3ah/(t 2 _71

2 ) + co/(o)(aji/e+ t30"h/((t 2 ah 2) -ao/(Co* 6))

= exp(- 2ald) (2-t)

where

6 = (1 - ast* ao/ fo) (25)

The dispersion relation can be obtained by simultaneously solving the dispertion equations in

the bulk medium and surrounding region:

Q12 =- 2_ 2 ((t- ah-/(t) (26)

ao2= /72_ go 2 (27)

The algebraic problems involved in a theoretical discussion of various magnetoplasnion modes

on a slab are fairly severe. Even for a semi-infinite medium, for which the thickness d -Do and

the exponetial term is zero, the solution requires considerable numerical effort. Note that

when the surface conduction is zero. there is no non-reciprocity in expr.(16) which can be

verified by reversing the sign of 3, resulting in no change of the expression. This is because a

slab structure is actually a symmetric configuration and the waves propogating ill the rev're

direction see no difference from the forward direction. However, when we discuss the "u-f ,ce

magneto-plasmon mode in a semi-infinite inediin we do have nonreciprocity, bince it IS no

longer a symmetric structure. Moreover. the properties of the surface magneto-plasiuozi, in al

slab of semiconductor can be approximately described by those on the surface of a semi-indluil,

medium. It is expected that the drawbacks of a conventional surface plasmon mode. ,am('lv

the higher loss and shallow penetration of ericr*y into the semiconductor. cai he I);iii ii v



removed, since the effects of carrier relaxation are overshadowed by the cyclotron resonlance

effects of the carriers provided that the magnetic field is sufficient high so that ,c> > 1L/,.

Fig.7(a) and (b) show the calculated results of propogation constant Re(o) and lo-., Iii(3)

as a function of external magnetc field for a surface magneto-plasmon mode on tihe surfae of

an infinite medium. The two curves correspond to different propogation directions. The

difference of the curves shows the nonreprocity of the wave propogation. Tile frequency is fixed

at fo-=150GHz and the material is GaAs with doping level of 101 5 cm "3 and mobility of 5,000

cm2/Vsec. It is seen that the propagation phase velocity is almost constant, but the loss is

reduced considerably in one direction for Ho>6 kG. In the reverse direction, the loss varies to

a lesser extent and there is a maximum loss at Ho=1.35 Tesla. When the mobility of the

material becomes higher, to 50,000 cm 2 /Vsec, namely, the carrier relaxation has less effect.

and cyclotron resonance can be expected. The calculation results are plotted in fig.S(a) and

(b). There exists very strong narrow resonance in one direction around Ho=9kG, which is

considered the cyclotron resonance. However other broader resonances in both directions

appear as well. These peaks are not identified and they may be the collision induced loss peaks.

The great difference of propagation properties, either in loss or in phase velocity, can be

utilized to the best for design of non-reprocical devices. However, cooling is necessary in order

to acquire the high mobility or the lower relaxation effects. Fig.9(a) and (b) show the

dispersion relations of surface magneto-plasmons for Ho=0.5TesJa, and material paraneter- as

above in fig.7(a) and (b). Again cyclotron resonance at f=220 GHz in one direction is clearly

seen, where the loss in the other direction is minimum. There are other peaks at lower

frequency, which are assumed to be induced by carrier relaxation. The cyclotron resonance

occurs in the direction whereby the rotation of the ellipsoidly rotated electric field is

synchronously resonant with the Lorentz force. This is only possible for one particular

direction.

Approximate explicit expressions can be obtained for the parameters in the regieni of high

carrier density , wp2 /wvm>> 1 so that the following term is approximately equal to

Ch' (f 2 0h) -3wwlw 
2  (28)

The choice of the plasma frequency should be appropriately low on the other hand -o that the

confinement of EM energy is not greatly reduced to maintain adequate interaction with the

carriers in the medium. We discuss two extreme cases. i.e.. the case of complete conflimnct at

the surface, and the case of the low frequency limit. For the complete comnfinc,,em t of LIl

waves at the surface, the propagation constant j approaches infinity and so (u the tran,\'mr.,e

constants ao and a,. so that we have (iQl= '3. Iii this case. tile .I rrace m;mm, -p'.m In



frequency is given by:

(wc+j v ) + [(wc+ Jvm)2 - rwp2l1/ 2  
(29)

where the upper sign and the lower sign coorespond to different propogation directions. The

imaginary part of w sh represents the attenuation of the surface mode with time. For exiistance

of a surface magneto-plasmon mode in a relatively long time scale, the necessary condition lb

vm<< <Wc.

For the low frequency regime, the propagation velocities for both directions are close to

that in vacuum to the first order of approximation. The secord order of modification gives the

propagation constants as:

30= 0 [( wc/wp) 2w+ (2vm _) 1 /2") + j (vm+ (29m,)1/2wc/wp] (30)
4wp 

~

where the upper sign and the lower sign again represent the results for two different

propagation direction. It is shown that the non-reciprocity lies primarily in the direction-

dependence of the loss. The physical origin of the nonreprocal loss behavior is that tile

partially circularly-polarized electric field in one direction is an active Helicon-like mode.

whereas in the other direction it is a passive anti-helicon-like mode. It is worthwhile to point

out that a greater nonreciprocal property can be achieved only for a material such as GaAs

with moderate doping level and higher magnetic field so that the surface EM waves call

penetrate a considerably larger portion of the volume of the slab specimen and under the

conditions that the cyclotron frequency exceeds the carrier relaxation rate. For higher carrier

density, the field energy of surface EM waves is further from the semiconductor in the vacuum.

rendering a vanishingly small non-reciprocal effect.

Now we briefly discuss the surface magneto-plasmon modes supported by surface

conduction. For the sake of simplicity, we assume that the semiconductor has very high

resistivity and the dielectric constant is (r. In this case the volume loss of the modes is

practically zero. The surface conductivity may originate from 2DEG sheet conduction and is in

the form of a 2-dimensinal diagonal tensor. The dispersion equations for the surface mode- ill a

seniiinfinite specimen are given by

fo/Qo+cr/ck - st/jw = 0 (31)

o02= 32_ 302 (32)

2= . 3o2Xr 23)



and as t - WPs2(j ,+V)/[c jw((ji+s)2+6S c)l (34)

is the transverse sheet conductivity of the 2DEG, where Wps= q-Ns/(com*s) and .

=qB/m*s is the surface cyclotron frequency. The super index 's' indicates the parameter of the

2DEG. In comparison with eq.(8) we conclude that the dispersion relations of a magneto

plasmon mode are similar to those of a normal surface mode without magnetic field. However,

the effective relaxation rate and the effective frequency are modified as:

Vseff= v s - Wp2S/(w 2+ Vs) 2  (35)

Weff= w + Wp w/(w2+ Vs) 2  (36)

respectively. Therefore it is expected that the loss is a decreasing function of the magntetic

field.

(4) Magneto-plasmon modes for the case of magnetic field normal to tile surface

Other orientations of magnetic field with respeect to the propogation and surface thanl

Voigt's are also of interest. Unfortunately, little attention has been paid to a general solution

taking into full account the arbitrary orientation of the magnetic field probably because of the

formida-le algebraic work. We are not going to do this job either but, instead, analyze a

special case, namely the case that the magnetic field is normal to the surface.

The magneto-plasmon modes in the configuration with normal magnetic field may be

separated into TH and TE modes. However, for a mixed TE and TH mode the field

components are related to each other through the antidiagonal tensor elements to an extent

depending on the relative value of their field components. For the TH modes, the electric field

is in the plane with DC magnetic field and the current componets are diagonalized with respect

to the electric field. Therefore, the boundary conditions give rise to the same dispersion

equation as eq.(4), in which the 'eff is replaced with ct. However, the dispersion equation

related to the cr1 and ,3 in the semiconductor must be derived from epr.( 20) whereby the k

vector is k= Ox + ja z :

(a12_ 02+/3o2 (t)(01 2 cp- ;2(t + do 2(pt) + (,32_ jo-p)jo-ah-= 0 (37)

The dispersion relation can be obtained by simultaneously solving (37). (32) and modified (I)

Again, the surface modes are of concern and their behavior can be described bY the solti?on

in the limit of thickness approaching to infinity. namely the case of a seini-infiuite m,diilll.



Figures 10 and 11 collect the calculated results of propagation constant and loss as a function

of cyclotron frequency or magnetic field. The parameters are taken as before. i.e., d =

101 5 cm - 3 and mobility u= 5 00 0 cm 2 / Vs. It is shown that the phase velocity does ,not chiiu-e

with magnetic field and is practically constant. There are two modes which have (iffereit lo,

characteristics. One mode shows a decreasing loss behavior with magnetic field, while the Io. ,

of the other mode has a maximum at a certain field. There is no non-reciprocity effect for thi.

configuration since the magnetic field normal to the surface has the same symmetry geometries

fer both directions. The field- dependence of the loss is stronger than in the case of the Voigt

configuration (compare these figures to fig. 7 ).

The intrinsic frequency of surface magneto-plasmons for this configuration is defined when

the propogation constant 0 -oo, leading to the condition of:

fp(W) ft(W) = 1 (38)

For the high frequency and high field limit, the intrinsic magneto-plasmon frequency is given

by:

,2 Er+(w.p/w~c)2

Wmp2= Wap ) (40)
fr-l+f r('p/wc)

The dispertion relations for this configuration with a 2DEG on the sample surface are nore

tedious and the modes can no longer be separated into TH and TE modes. We will not go into

the details here. M.Nakayama has given a formular for the surface modes existing on the

interface and for the semiconductor treated as a simple dielectric with Cr [3 .

3. EXPERIMENTS AND RESULTS

(1) Excitation Methods of Surface Plasmon Modes

The excitation of surface plasmon modes has been well-studied on metal surface at optical or

infrared bands. No progresses has been reported, however, on surface plasinons in a

semiconductor at millimeter or near-millimeter bands. This is probably since the relaxation

rate at these bands in semiconductors is comparable or even much higher than the frequency

so thpt the surface modes are either damped very fast and they can only exist in a very short

spatial range (for moderate carrier density), or approach a conventional surface EM wave

mode with small energy penetration into the samnple Lip to a skin depth (for high ci 'wi

,lensitv). It appears that the surface- mode at the intrinsic frequency, the most iiitcr-,Iiin

situation, can hardly exist due to the heavy loss. Moreover. the very short %\aw- v1rth Ii 11,



this frequency presents a difficult task of excitation.

The previous investigators utilized quasi-optical excitation methods--prism cotpliiig miid

grating coupling and tile results were not encouraging. Actually. the band of 110-170 (llz i

well above the submillimeter bands %,here the EM waves have little optical ray attributes. 'l,

lower end of the EM spectrum features strong diffraction effects, especially whein one u1sCs it

horn antenna as an excitation source. The diffraction causes large stray coupling t.o the

detector, so that the signal of the surface mode, in most cases, is immersed ill it and cal

hardly be identified. While the excitation by grating is intrinsicly narrow-banded, the prism

coupling would require a prohibitively large volume of semiconductor specimen and becomes

unpractical. We, therefore, envisaged experiments using conventional microwave excitation

methods, namely, edge excitation and grating waveguide excitation.

The experimental schemes for the exitation are shown in figures 12 and 13. For edge

excitation, the signal is coupled at the edge end of a dielectric waveguide to the slab of saniple.

Quartz is used to construct a slab waveguide which is coupled to a horn antenna. The quatz

waveguide is placed in the horn normal to the E plane so that only TH modes are excited and

so are appropriate for the semiconductor waveguide. The features of edge excitation are

simplicity and broad-band response. However, other radiation modes can also be excited via

the air. For our configurations, three kinds of modes may be generated, i.e., two are waveguide

modes, slab modes and surface modes, the others are radiation modes. To identify the modes.

special interference techniques are necessary.

The second excitation method is to use a grating waveguide. This method can eliminate the

stray modes and preserve the desired mode by appropriately choosing the grating space and

letting it be equal to a half-wavelength of the desired mode. However, this has the drawback of

narrow band performance. The narrow band performance requires precise fabrication of the

waveguide to reduce the insertion loss. Fig.14 shows the insertion loss of a grating waveguide

versus frequency. The waveguide consists of a slab semiconductor in the middle that ik

surrounded by two symmetric gratings at a short distance from the surfaces. Parallel metal

plates are placed beyond the grating vith a tapered end in contact with the semiconductor to

reduce the stray radiation to the detection horn. The spacing of the grating is 1.-tram. which

cooresponds to a half-wavelength of the slab mode of 0.35mm thick semiconductor at f=150

GIz. It is shown that there are two peaks of tramsmission close to each other. The spctt(lalr

transmission behavior may be caused by misalignment of the grating waveguide. -inc, I ie

waveguide was hand-made. At any rate, narrow transmission behavior is clearly delunostrmetd.

(2) Space harmonics techninue for detection pltsmon modes in semi ondu(:tors

A Space harmonic technique is envisaged for det-ctioii and analysis of the inodVI Vxit i e. 'I



the surface of the slab sample. Assume that there are several modes at the signal fivtj,,n'-v\

with different wavelengths propagating along the slab as an incident signal:

-i~3lX+O 1 + - +.

Vin= ale + a.2e - -+ )......

where x is the distance from the end, a total reflection occurs when a short circuit is placed ol

the end of the slab waveguide and the reflectedsignal is:

Vref= ale Wx01 + 7r/
2 +aei/x±O,±r/ 2 ..... (42)

Tile mixing of the incident waves and reflected waves produces a standing waveform and a

Fourier transform calculation of the waveform yields a modal space-spectrum. The produced

mixed space harmonics include 231, 2j32 which are conventional standing waves and. in

addition, the mixture of 31+32, 31-132. The beat mixture signal can be identified since it can

be produced even when there is no reflection. However, a clear identification requires careful

study to separate the basic space harmonics from others. Fortunately, in most case the

mixture of different modes is sufficiently weak and the basic space harmonic canl be (fasi ly

recognized. This proposed technique has the features of simplicity in measurement and analysis

and does not require more complex set-up as in interference methods.

Fig. 15 thorgh 17 show typical measured standing-wave patterns along the surface of the

semiconductor slabs for different carrier densities. The measurement scheme is shown in fig. IS.

The plasmon modes in the semiconductor slab were excited either with the edge method or

with the grating waveguide method. The field strength near the surface was detected by

another screened quartz dielectric waveguide and through a horn the signal was fed to the

crystal detector. An EH tuner was placed between the source and the feeding quartz

waveguide to achieve maximum transmission or matching. As the coupling of the detection

head to the different modes are not the same, the measured patterns can only serve as an

overall view of the possible modes and hardly can be said to indicate the relative intensities of

the modes. To be specific. the coupling to the slab mode is much weaker than to the surface

mode since the fled of surface mode is extended further into the air while its wavelength is

close to that in air in this frequency range (110-170Glz). Having measured the standing-wav,

pattern, the Fourier analysis was readily made to produce the space harmionic patternl o,

shown in fig.19 to 20 respectively transformed from fig. 15 to 17. Many other curves have h,,n

meastured and analyzed for different cases and we add some of the results shown in Fit.21

though 24.

Our Ineasurements have revealed several modes alonp the slab wavegtidv. . as ho\ ii II



fig.15 though 24. In fig.15 is shown the detected field distribution along a slab of a lower doped

semiconductor. In its Fourier transform spectrum shown in fig.19, the dominant mode has

approximately an air wavelength and is less attenuated with distance. This mode is sU)l)Opsed

to be the surface mode. We have measured the breakdown voltage of a Schottky contact u.iiig

a tungsten-probe contact to estimate the doping concentration of the specimien. Trhe

approximate doping level is 3x1015cm -3 and this level is sufficient to support the surface

plasmon mode. The calculation shows that the surface plasmon mode at 120 to 170 GIlz band

has a wavelength almost equal to that in vacuum, On the other hand, the measurements oil a

slab semiconductor of higher doping (see fig.16 and 17) reveal two or three modes, one being

the surface mode of about vacuum wavelength, the others having shorter wavelengths as

shown in fig.18. The shorter waves appear near to the short end of the slab and attenuate

quickly with distance. To identify these modes we again measured the field distribution with

an absorber placed on the other side of the slab. Then, the standing waves of -,horter

wavelength disappeared and only the surface mode remains, as shown in fig.17 and its space-

harmonic diagram, fig.21. Since only the slab bulk modes have fields that penetrate onto the

other side and the surface mode has very shallow penetration depth into the sample, it is

believed that the space-harmonics of shorter wavelength are slab modes. However, it is not yet

understood why the slab modes can survive over such a long distance since our theoretical

calculations indicate that the slab modes for such a high doping material should suffer heavy

loss. Probably, the slab modes are excited just at the short end. Care must be taken on

eliminating the interference of radiation modes, especially because those with wavelength are

close to that of the surface mode. In our experiments, we used screening for the excitation euge

and also for the detection edge of the dielectric-waveguide and only a small slit was exposed

for receiving the rf-energy.

In order to investigate the modes excited in the grating waveguide, we made an extension of

the semiconductor slab into the air for about 1.5" and the extended part of the slab was used

for measurements. If a slab mode was excited by the grating, its propagation along the slab

could be detected. Fig.25 shows the detected field distribution at this extended slab and againl

two modes are revealed, one mode having an air wavelength and the other having a

wavelength approximately equal to the grating spacing. However. the mode of shout,.r

wavelength appears at the beginning of the extension part and decays with diktaiice. while tie

mode of longer wavelength seems to be growing with distance. One reasonable explawltioli

could be that the test frequency is not correct for the wavelength of the slab mode to coincide

with the grating spacing and therefore the slab mode changes into a surface mode with

distance.

Although these results are still preliminary, the proposed space harmonic teclimi m s



deniostrated great potential in detection and identification of multimodes and inve-tigati ul of

their interaction in an open waveguide system.

(3) Experiments on Magnetic-Field-Dependence of the Transmission for Slab Waveguide

We have carried out experiments of the magnetic field effects on transmission for a variety

of configurations using semiconductor slab waveguide or conventional waveguide containing

semiconductor slab. The magnetic field was varied, with current ranging in 0 to 24A, from 0 to

6kG for the magnet-spacing of 25mm and from 0 to 12kG when the spacing was reduced to

10mm. The experiments were performed at room temperature and in the 120-170 GIlz band.

The non-reciprocity was tested by reversing the magnetic field, since this is equivalent to tile

reversal of propagation direction.

For a slab waveguide, the experiments indicate that there is practically no direction-

dependence of transmission, either for the magnetic field normal to the surface or for the Voigt

configuration. The results are within our expectations, since the slab mode is symmetric with

respect to the magnetic field and a reversal of propagation direction sees no change il the

relation of the field to the geometry and the propagation. The field dependence of transmision

is shown in fig.27 and 28 respectively for the Voigt configuration and the geometry in which

the magnetic field is normal to the surface. For the Voigt configuration, the transmission is

reduced by about 5% for H up to 6kG. For the magnetic field normal to the surface, the fieJd-

dependence is stronger than the Voigt configuration. In fig.28, the parameter is frequency and

it is shown that the transmission may increase or decrease at different frequencies. It is

difficult to make comparison with theoretical calculations, since the slab mode is not well-

matched. For a mismatched circuit there are waves propagating in both direction. Besides the

propagation loss is a function of the field, and a change of matching can result in variation of

the total transmission.

In order to real;ize non-reciprocity of the slab mode in the Voigt configuration, we can use

either non-symmetric excitation, in which a one-sided mode, such as a surface mode would be

launched, or intentionally place some absorber near one side of the surface. In the latter case.

the absorption of the waves will obviously be dependent on the direction, since the magnletic

field . in one direction, pulls the EMI field away from the slab. resulting in more absorptiOll.

while it doesn't in the another direction. Non-reciprocity of the transmission is shownt il fig.29.

The sample under test has a doping concentration of 3 x 10 15cm "3 and is 0.35m thick ind

15 x 20im2 width by length.

For real non-reciprocal devices it is not a good Idea to utilize open slab waveguidc -l t' it

presents problems of radiation loss and matchiing difficulty. Instead. Conventioatl Iv;iv'tlt

strtctures containing semiconductor sample are tmore )referable. To develop su ct %a v,c, n1h



nonreciprocal devices requires more theoretical calculations in tile framework of two

dimensional waveguide and more precise mechnical work to realize them. This is beyond the

scope of the present work. However. we have made some primitive experiments to observe li.

transmission performance for a specific waveguide structure. The semiconductor wafer was First

grinded down to 150jm in thickness and was cleaved into dimensions of about 0.7amm by Smm

or 1mm by 8mm. The specimen was placed in a square waveguide off the center axis either iii

the E plane or with a tilted angle about 700 to the E plane against the narrow vall. The

magnetic field is applied in the H plane. The transmission vs. magnetic field for a given

frequency (f=145GHz) is shown respectively in figs.30 and 31. For the geometry of the sample

in the E-plane, a dramatic increase of the transmission in one direction at H=4.3 kG and when

the magnetic is reversed is shown to have pronounced non-reciprocity. Geometric resonance at

a particular magnetic field may be responsible for the abrupt increase. The magnetic-field-

dependence of transmission for the sample with geometry tilted off the E plane also shows the

non-reciprocity characteristics but with no abrupt change with H. Other configurations of

sample-waveguide relative placement were tested as well. In particular, no nonreprocity wa

found when the sample, which was of the dimension 1.5X8 mm 2 , was placed on the H plane

and against the broad wall of the waveguide.

4. CONCLUSIONS

We have presented theoretical calculations of behavior of surface plasmon modes and

magnetic-plasmon modes in semiconductors. The calculation was extended to the case where

the semiconductor had a heterolayer of 2DEG on the surface. Carrier relaxation was taken

into account in the calculations. It is shown that the surface mode for a conventional

semiconductor slab has no intrinsic surface resonance frequency when the carrier relaxation is

taken into account and the phase velocity is close to the co for the low frequency limit. On

the other hand the surface mode supported by surface conduction, such as in the case of

2DEG, has more surface wave properties, i.e., lower phase velocity and more field

concentration on the surface. however. heavier loss is anticipated. Theoretical studies of

magnetic-plasmon in semiconductors were done for the Voigt geometry and for the case of the

magnetic field perpendicular to the surface. It is indicated that there are non-recipocal

properties of transmission for the Voigt configuration and stronger magnetic-field depende ce

of the transmission, no non-reciprocity though, occuring in the latter configuration.

Experiments were performed to qualitatively compare the results to the theoretical c;ilctilaitioi.

Finally. we proposed several experimenatal metl,ods. First we proposed an edge ,xcitatht

method and a grating wavegiide excitation :npthod. The first one provides bioad-,;aijid

:xcitation and different modes may be si i iilt.kii(n .,ly excitid. The grating wavegutiid, 1 ie lid.



on the other hand, is capable of excitation of a single mode, surface mode or slab mode,

depending on the grating spacing. However it is narrow banded. Secondly, we proposed a novel

mode detection technique, namely the space harmonic technique. The proposed method has the

feature of simplicity in experimentation, and is easy to understand and analyze.

During this period of time, a new proposal for future research work was prepared which is

not included in this report[4j. The future work is proposed to explore the active wave

supported by a semiconductor plasma, in addition to further work to develop non-reciprocal

devices. For the latter it is suggested to use a material of higher mobility, including

heterostructure semiconductors and InSb , etc.
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Fig.1. Calculated transmission characteristics of a slab semiconductor. Nd=IU''. 1015

1016cm- 3 forrn upper to lower respectively. Mobility is taken to be 50,000 cm-/Vs. (a).dispersion

relation, (b) attenuation vs. frequency.

Fig.2. Surface palsmon mode supported by bulk carrier conduction. The mobility M=5U.Uoucn/Vs.

Nd=10 15 /cm 3. (a) dispersion, (b) attenuation.

Fig.3. Surface palsmon mode supported by bulk carrier conduction. The mobility U=50.OOcm 2 /Vs.

Nd=10 18/cm 3. (a) dispersion, (b) attenuation.

Fig.4. Calculated surface plasmon mode supported by surface cxonductance. The parameters are

taken: Ns=10 12cr -2 , p=50,000cm 2 /Vs d=0.4mm. (a) dispersion relations, (b) attenuation

vs.frequency.

Fig.5. The calculated transmision at f=15OGHz vs. surface carrier density. Mobility Ji=50,000

cm 2 /Vs. (a) wavenumber, (b) attenuation.

Fig.6. Voiglt configuration

Fig.7. The calculated transmission characteristics vurses magnetic field Ho for a Voigt configuration.

Nd=1015/ cm3 and p= 5 ,000 cm 2 /Vs. f=15OGHz. (a) wavenumber, (b) attenuation. The two curves

coorespond to different Ho directions.

Fig.8. The calculated transmission characteristics vurses magnetic field Ho for a Voigt configuration.

Nd=1015/ cm3 and u= 5 0,000 cm2/Vs. f=15OGHz. (a) wavenumber, (b) attenuation. The two curves

coorespond to different Ho directions.

Fig.9. The calculated transmission characteristics vurses frequency at Ho=0.5 Tesla for a Voigt

configuration. N d=1015/ cm 3and P= 5 0 ,000 cm2 /Vs. (a) wavenumber, (b) attenuation. The two

curves coorespond to different propogation directions.

Fig.10. The calculated transmission characteristics of model 1 vurses cyclotron frequency or magnetic

field Ho for a configuration of normal Ho to surface. Nd=10 15/ cm and M=5,000 cm2 /Vs. fl50GHz.

(a) wavenumber, (b) attenuation. fc=q Ho/ (2,rm*).

Fig. 11. The calculated transmission characteristics of model 2 vurses cyclotron frequency or magnetic

field Ho for a configuration of normal Hc fo surface. Nd=1015 / cm3 and Mi=5,000cm 2 /Vs f=15OGHz.

(a) wavenumber. (b) at~enuation. fc=q Ho/ (2,m*).

Fig.12. Edge excitation of TH o'ab modes or surfact TI1 modes and edge detection by the use of

dielectric waveguide of quatz.

Fig. 13. Schematic structure of gra' ing waveguide which is coupled to a horn anttena and in which a

slab semiconductor is placed in *he middle and the slab has an extensio out of the grating waveguide

for testing.

Fig.14. Measured t'aismission coefficient vs. frequency of the grating waveguide coupled with slab

15 3semiconductor. The semiconductor Ias thickness of' 0.O35mm and doping level of 3xl0 /cn

Fig. 15. The detected field distributioi close to the surface of the semiconiductor at edge excitation

S7



condition. Nd=3x10 1 5 /cm3 .

Fig.16. The detected field distribution close to the surface of the semiconductor at edge excitation

condition. Nd=3x1017/cm 3 .

Fig.17. The detected field distribution close to the surface of lie semiconductor at edge excitation

condition. Nd= 3xlO7/cm3 . An absorber is placed on the other side of the slab.

Fig.18. Fourier transform of the diagram of fig15. and its space harmonic is shown.

Fig.19. Fourier transform of the diagram of figl6. and its space harmonic is shown.

Fig.20. Fourier transform of the diagram of figl7. and its space harmonic is shown.

Fig.21. The detected field distribution close to the surface of the semiconductor at edge excitation
17 3condition. Nd=lxlO /cm

Fig.22. The detected field distribution close to the surface of the semiconductor at edge excitation

condition. Nd=lxl017/cm3. An absorber is placed on the other side of the slab.

Fig.23. Fourier transform of the diagram of fig2l. and its space harmonic is shown.

Fig.24. Fourier transform of the diagram of fig22. and its space harmonic is shown.

Fig.25. The detected field distribution close to the surface of the extended part of the semiconductor

at grating waveguide excitation condition. Nd= 3xl015/cm3. An absorber is placed on the other side

of the slab. It is shown that the higher wavnumber mode excited by grating decays with distance,while

the amplitude of lower wavenumber grows, showing the higher mode's transfering into surface mode.

Fig.26. Fourier transform of the diagram of fig25, and its space harmonic is shown.

Fig.27. Transinission as a function of magnetic field for a Voigt configuration of the slab.

Nd=3xl0 15 /cm 3 . d=U.4mm. W

Fig.28. Trp~nsmission as a function of magnetic field for normal Ho configuration of the slab.

Nd= 3xlO5/cm3. d=0.4mm. The curves cooresponde to different test frequency.

Fig.29. Transmission as a function of magnetic field for a Voigt configuration of the slab.

Nd= 3 xlO5/cm3. d=0.4mm. An absorber is placed near the slab, which gives rise to non-reciprocity in

transmission.

Fig.30. Transmission as a function of magnetic field for the configuration of waveguide containing

seinicoiductor slab in the E-plane displaced from thc center of the waveguide. Nd=3lO1 5 /cm 3 .

d=0.15mm. Ho is normal to the slab.

Fig.31. Transmission as a function of magnetic field for the configuration of waveguide containing

semiconductor slab 700 -tilted off the E-plane against the narrower wall of the waveguide.

Nd=3xlO5/cm3. d=0.15min. H, is normal to the slab.
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C') b)rj dispersion and attennuat ion retations of stab GaAs

MobiL ity=50000. thickness=0.35mm,Nd=10^14,.15.16 respec.
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F-;! '' GaAs slab of 0.35mm,without mobility 50000 and Nd=10^15 cm-3
surfae mode by surface equation
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* , pure surface plasmon mode, Ns=10 121/CI,,

slab GaAs with mobility 50000,d=o.4mm,p,x versus frequency

CO 5000
k

f :=- 300
kc 6.28

1/cm

k ,/

0/

0 f 600

k

GHZ

500
1/cm

k .,k

kb)/



stab GaAs with mobitity 150000,d=O.4mm,p,( versus surface carrier

density
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Fig.6. Scheme of a Voiglt configuration



Fig.7. The calculated transmission characteristics vurses magnetic field Ho for
a Voigt configuration. Nd=1O',5 / cm 3 . P=5 ,OO cm 2 / Vs. (a) wavenumber,

(b) attenuation. The two curves coorespond to different HO directions.
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Fig.8. The calculated transmission characteristics vurses magnetic field ii, for

a Voigt configuration. N -10 / cm . U=5 0,000 cm 2 /Vs. (a) wavenumber,
(b) attenuation. The two curves coorespond to different Ho directions.
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Fig.9. The calculated transmission characteristics vurses frequency at 11o=0.5 Tesla

for a oigt 14J,,4L~tol. d=_U cm , p=50,000 cm 2 /Vs. (a)u

(b) attenuation. The two curves coorespond to different propogation dircctions.
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Fig.1O. The calculated transmission characteristics of model 1 vurses magnetic field lbo
15 32

for a configuration of normal H0 to surface. Nd =10 cm .P=5,000 cm /%Vs.
(a) wavenumber, (b) attenuation. + fI 9 2 H
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Fig.11. The calculated transmission characteristics of model 2 vurses magnetic field fl
15 32

for a configuration of normal Ho to surface. Nd=lO cm u =,000 cm /%VS.
(a) wavenumber, (b) attenuation. 5, er4, .
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120-170GHz screen short end
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Fig.12 The test configuration for detection of the propogation modes

in a slab of semiconductor using standing wave method
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Fig.13. Schematic structure of grating waveguide which is coupled to a horn anttena

and in which a slab semiconductor is placed in the middle and the slab has

an extension out of the grating waveguide for testing.
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Fig..14. Measure'd tranismision coefficient vs. frequency of die grating waveguide coupled

with slab semiconductor. The semiconductor has thickness of 0.35ram and

doping level of 3x1O1 / cm3.
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Fig.15. The detected field distribution close to the surface of the semiconductor

at edge excitation condition. Nd-3x10'5 /CM3
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Fig.16. The detected field distribution close to the surface of the semiconductor

at edge excitation condition. N -3xl0 1 7 /cm
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Fig.17. The detected field distribution close to the surface of the semiconductor

at edge excitation condition. Nd= 3xlO 7/cm3. An absorber is placed

on the other side of the slab.
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Fig.fa The space-spectrum vs.wavenumber
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without attaching absorber
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Fig.13 The plot of output spectrum for a sample
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Fig.2 The plot of output spectrum for a sample
with higher conductivity and with short end
A side magneic is applied,absorber on back side of
the sample, from the figure it is seen the mode with
short wavelength is disapeared
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Fig.2 3 The space-spectrum vs.wavenumber
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Edge excitation with short end
without absorber

without attaching absorber
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side
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Fig.25. The detected field distribution close to the surface of the extended part

of the semiconductor at grating waveguide excitation condition.

Nd-3x10 1 5 /cm3. An absorber is placed on the other side of the slab.

It is shown that the higher wavnumber mode excited by grating

decays with distance,while the amplitude of lower wavenumber grows,

showing the higher mode's transfering into surface mode.
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Fig.21 The space spectrum vs.wavenumber for the
the extension of a grating waveguide with low
resistivity,with short end and. The first peak
cooresponds to the surface mode, which grows with
distance and the second peak is slab mode excited
by grating and attenuates with distance.
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Fig.27. Transmission as a fdnction of magnetic field for a Voigt configuration

of the slab. Nd=3x1015 /cm 3 . d-O 4mm.
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Fig.28. Transmission as a function of magnetic field for normal H0 configuration

of the slab. Nd=3xl0' 5 /cm 3 . d-O 4mm. The curves cooresponde

to different test frequency.
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Fig.29. Transmission as a function of magnetic field for a Voigt configuration

of the slab. N d= 3 xlO 5/cm3. d=O.4mm. An absorber is placed near the slab,

which gives rise to non-reciprocity in transmission.
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Fig.30. Transmission as a function of magnetic field for the configuration

of waveguide containing semiconductor slab in the E-plane displaced

from the center of the waveguide. N d3xI01 5 /cm 3 . d=O.l5mm.

Ho is normal to the slab.
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Fig.31. Transmission as a function of magnetic field for the configuration

of waveguide containing semiconductor slab 70 0 -tilted off the E-plane

against the narrower wall of the waveguide. Nd=3xl01 5 /cm 3 . d=O.l5rnm.

Ho is normal to the slab.


